613 research outputs found
Assembly of the Auditory Circuitry by a Hox Genetic Network in the Mouse Brainstem
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem
Redescription of Cardiosporidium cionae (Van Gaver and Stephan, 1907) (Apicomplexa: Piroplasmida), a plasmodial parassite of ascidian haemocytes
Cardiosporidium cionae (Apicomplexa), from the ascidian Ciona intestinalis L., is redescribed with novel ultrastructural, phylogenetic and prevalence data. Ultrastructural analysis of specimens of C. intestinalis collected from the Gulf of Naples showed sporonts and plasmodia of C. cionae within the host pericardial body. Several merogonic stages and free merozoites were found in the pericardial body, together with sexual stages. All stages showed typical apicomplexan cell organelles, i.e. apicoplasts, rhoptries and subpellicular microtubules. Merogonic stages of C. cionae were also produced inside haemocytes. A fragment of the rSSU gene of C. cionae was amplified by PCR using DNA extracted from the pericardial bodies. The amplified product showed closest affinity with other apicomplexan representatives and a 66 bp unique insertion, specific for C. cionae, at position 1644. Neighbour-joining phylogenetic analysis placed C. cionae in a clade with other piroplasm genera, including Cytauxzoon, Babesia and Theileria spp. The parasite was found in different populations of C. intestinalis with highest prevalence in October–November. Ultrastructural and DNA data showed that the organism, described in 1907 from the same host but not illustrated in detail, is a member of a novel marine apicomplexan radiation of tunicate parasites
Morphogenesis of otoliths during larval development in brook lamprey, Lampetra planeri
Otolith morphogenesis of the brook lamprey, Lampetra planeri, was analysed from larval to adult stages. The brook lamprey remains juvenile for about 4 years, facilitating analysis of otoliths maturation that permits to identify relevant evolutionary traits in this primitive species and to compare our results with more evoluted species of vertebrate taxa. We combined histochemical, immunohistochemical, scanning electron microscopy, elemental analysis and X-ray diffraction of lamprey otoliths to establish possible relationships between otolithic mass, individual crystals, the otolithic organic substance that binds individual otoconia together and the inorganic elements that mineralize the lamprey otoliths. Histochemical analysis of the otoliths suggests that mineralization occurs gradually, beginning near the apex of the secretory epithelium. Then, the otoconia increase in size by deposition of layers of a dense crystalline substance. Immunohistochemical reactivity of calcium binding proteins indicates that calmodulin, calbindin, S-100 and parvalbumin are parts of the uncalcified organic mass that holds otoconia together. Imaging of the immunoreactivity of each protein by Confocal Laser Scanning Microscopy in ammocoete at the first year of the larval stage shows weak reaction products which, however, gradually increase in intensity, with peak value in ammocoete at the fourth year of the larval stage
Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment
Food dyes, or color additives, are chemicals added to industrial food products and in domestic cooking to improve the perceived flavor and attractiveness. Of natural and synthetic origin, their safety has been long discussed, and concern for human safety is now clearly manifested by warnings added on products labels. Limited attention, however, has been dedicated to the effects of these compounds on aquatic flora and fauna. For this reason, the toxicity of four different commercially available food dyes (cochineal red E120, Ponceau red E124, tartrazine yellow E102 and blue Patent E131) was assessed on three different model organisms, namely Cucumis sativus, Artemia salina and Danio rerio that occupy diverse positions in the trophic pyramid. The evidence collected indicates that food dyes may target several organs and functions, depending on the species. C. sativus rate of germination was increased by E102, while root/shoot ratio was ∼20% reduced by E102, E120 and E124, seed total chlorophylls and carotenoids were 15–20% increased by E120 and 131, and total antioxidant activity was ∼25% reduced by all dyes. Mortality and low mobility of A. salina nauplii were increased by up to 50% in presence of E124, E102 and E131, while the nauplii phototactic response was significantly altered by E102, E120 and E124. Two to four-fold increases in the hatching percentages at 48 h were induced by E124, E102 and E131 on D. rerio, associated with the occurrence of 20% of embryos showing developmental defects. These results demonstrated that the food dyes examined are far from being safe for the aquatic organisms as well as land organisms exposed during watering with contaminated water. The overall information obtained gives a realistic snapshot of the potential pollution risk exerted by food dyes and of the different organism' ability to overcome the stress induced by contamination
The Ampullae of the Inner Ear in the Lizard Podarcis S. Sicula. Ultrastructural Aspects
The inner ear ampullae of the lizard Podarcis s. sicula were studied to determine better the ultrastructure of ampullar epithelial cells.
Our study confirmed that the ampullae of the membranous labyrinth of this lizard are similar to those of other vertebrates in their ultrastructural aspect.
Moreover, our observations revealed a special type of dark cells, restricted to a small area of the crista. They appeared similar to type II sensory cells and showed a dark, finely granular cytoplasm, containing numerous mitochondria and ribosomes, extensive Golgi apparatus and abundant glycogen.
The morphology of these cells suggests that they may be special sensory cells, or different stages of sensory cells, probably implied in the crista cell turn-over described for some vertebrate groups
The Immune Contexture in Canine Anal Sac Adenocarcinoma: Immunohistochemical Quantification of Tumor-Infiltrating Lymphocytes and Tumor-Associated Macrophages with Image Analysis
Canine anal sac gland adenocarcinomas (ASACs) are locally aggressive and highly metastatic to regional lymph nodes. Tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) can be effective prognostic and predictive markers in numerous human neoplasms and are increasingly investigated in dogs. The aim of this study was to characterize immune cells in canine ASACs and their relationship with tumor size, histologic metastatic status, and tumor clinical stage. Thirty ASACs with known tumor size, metastatic status, and clinical stage were immunolabeled for Iba1 (macrophages), CD20 (B cells), CD3 (T cells), and Foxp3 (regulatory T cells). With image analysis, two areas of 1 mm2 were analyzed for each case at the tumor core (TC) and invasive margin (IM) and immune cells were counted. Eighteen patients had metastasis at the time of diagnosis, of which fifteen were nodal only, and three were both distant and nodal. The median tumor size was 32.5 mm (range 11–70). The clinical stage was I in five cases, II in seven cases, III in fifteen cases, and IV in three cases. T cells and macrophages were the most abundant immune cells in all tumors. Tumor size did not influence the number or type of infiltrating immune cells. By contrast, significantly higher numbers of TC T lymphocytes were found in patients without metastasis, while significantly higher numbers of TC macrophages were found in dogs with metastasis. Immune cell infiltrate did not differ according to clinical stage. The results indicate that the tumor immune microenvironment, specifically TILs and TAMs, contribute to tumor behavior and may influence metastatic potential; in particular, high CD3 infiltration may prevent tumor progression, while increased macrophage infiltration could promote it
Airway Remodeling in Feline Lungs
Airway remodeling encompass structural changes that occur as the result of chronic injury and lead to persistently altered airway structure and function. Although this process is known in several human respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD), airway remodeling is poorly characterized in the feline counterpart. In this study, we describe the spontaneous pulmonary changes in 3 cats paralleling the airway remodeling reported in humans. We observed airway smooth muscle cells (ASMCs) hyperplasia (peribronchial and interstitial), airway subepithelial and interstitial fibrosis, and vascular remodeling by increased number of vessels in the bronchial submucosa. The hyperplastic ASMCs co-expressed α-SMA, vimentin and desmin suggesting that vimentin, which is not normally expressed by ASMCs, may play a role in airway thickening, and remodeling. ASMCs had strong cytoplasmic expression of TGFβ-1, which is known to contribute to tissue remodeling in asthma and in various bronchial and interstitial lung diseases, suggesting its involvement in the pathogenesis of ASMCs hyperplasia. Our findings provide histologic evidence of airway remodeling in cats. Further studies on larger caseloads are needed to support our conclusions on the value of this feline condition as an animal model for nonspecific airway remodeling in humans
Improvement of fatty acid profile and studio of rheological and technological characteristics in breads supplemented with flaxseed, soybean, and wheat bran flours
Functional breads constitute an interesting alternative as vehicle of new essential fatty acids sources. The aim of this study was to improve the fatty acids (FA) profile of bakery products, producing breads with low saturated fatty acid (SFA) content and with high polyunsaturated fatty acid (PUFA) content, through partial substitution of wheat flour by other ingredients (soy flour, flax flour, and wheat bran) and to analyze the effect of this change on the technological, rheological, and sensorial characteristics of breads. Flaxseed flour (FF), soybeans flour (SF), or wheat bran (WB) was used to replace 50, 100, and 150 g kg-1 of wheat flour (WF) in breads. FF or SF produced a decrease in monounsaturated and SFA and an increase of PUFA in these breads. Furthermore, breads replaced with FF presented considerable increase in the content of n3 FA, while, SF or WB contributed to rise of linoleic and oleic FA, respectively. The substitution percentage increase of FF, SF, or WB to formulation produced changes in the colour, rheological, textural, and technological characteristics of breads. This replacement resulted in improved lipid profile, being breads with 50 g kg-1 SF, the better acceptance, baking features, and enhanced fatty acid profile.Centro de Investigación y Desarrollo en Criotecnología de Alimento
Improvement of fatty acid profile and studio of rheological and technological characteristics in breads supplemented with flaxseed, soybean, and wheat bran flours
Functional breads constitute an interesting alternative as vehicle of new essential fatty acids sources. The aim of this study was to improve the fatty acids (FA) profile of bakery products, producing breads with low saturated fatty acid (SFA) content and with high polyunsaturated fatty acid (PUFA) content, through partial substitution of wheat flour by other ingredients (soy flour, flax flour, and wheat bran) and to analyze the effect of this change on the technological, rheological, and sensorial characteristics of breads. Flaxseed flour (FF), soybeans flour (SF), or wheat bran (WB) was used to replace 50, 100, and 150 g kg-1 of wheat flour (WF) in breads. FF or SF produced a decrease in monounsaturated and SFA and an increase of PUFA in these breads. Furthermore, breads replaced with FF presented considerable increase in the content of n3 FA, while, SF or WB contributed to rise of linoleic and oleic FA, respectively. The substitution percentage increase of FF, SF, or WB to formulation produced changes in the colour, rheological, textural, and technological characteristics of breads. This replacement resulted in improved lipid profile, being breads with 50 g kg-1 SF, the better acceptance, baking features, and enhanced fatty acid profile.Centro de Investigación y Desarrollo en Criotecnología de Alimento
- …
