3,932 research outputs found
State of Alaska Election Security Project Phase 2 Report
A laska’s election system is among the most secure in the country,
and it has a number of safeguards other states are now adopting. But
the technology Alaska uses to record and count votes could be improved—
and the state’s huge size, limited road system, and scattered communities
also create special challenges for insuring the integrity of the vote.
In this second phase of an ongoing study of Alaska’s election
security, we recommend ways of strengthening the system—not only the
technology but also the election procedures. The lieutenant governor
and the Division of Elections asked the University of Alaska Anchorage to
do this evaluation, which began in September 2007.Lieutenant Governor Sean Parnell.
State of Alaska Division of Elections.List of Appendices / Glossary / Study Team / Acknowledgments / Introduction / Summary of Recommendations / Part 1 Defense in Depth / Part 2 Fortification of Systems / Part 3 Confidence in Outcomes / Conclusions / Proposed Statement of Work for Phase 3: Implementation / Reference
Historical background and design evolution of the transonic aircraft technology supercritical wing
Two dimensional wind tunnel test results obtained for supercritical airfoils indicated that substantial improvements in aircraft performance at high subsonic speeds could be achieved by shaping the airfoil to improve the supercritical flow above the upper surface. Significant increases in the drag divergence Mach number, the maximum lift coefficient for buffer onset, and the Mach number for buffet onset at a given lift coefficient were demonstrated for the supercritical airfoil, as compared with a NACA 6 series airfoil of comparable thickness. These trends were corroborated by results from three dimensional wind tunnel and flight tests. Because these indicated extensions of the buffet boundaries could provide significant improvements in the maneuverability of a fighter airplane, an exploratory wind tunnel investigation was initiated which demonstrated that significant aerodynamic improvements could be achieved from the direct substitution of a supercritical airfoil on a variable wing sweep multimission airplane model
Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses.
Wavelength comparisons have indicated that circadian phase-shifting and enhancement of subjective and EEG-correlates of alertness have a higher sensitivity to short wavelength visible light. The aim of the current study was to test whether polychromatic light enriched in the blue portion of the spectrum (17,000 K) has increased efficacy for melatonin suppression, circadian phase-shifting, and alertness as compared to an equal photon density exposure to a standard white polychromatic light (4000 K). Twenty healthy participants were studied in a time-free environment for 7 days. The protocol included two baseline days followed by a 26-h constant routine (CR1) to assess initial circadian phase. Following CR1, participants were exposed to a full-field fluorescent light (1 × 10 14 photons/cm 2 /s, 4000 K or 17,000 K, n = 10/condition) for 6.5 h during the biological night. Following an 8 h recovery sleep, a second 30-h CR was performed. Melatonin suppression was assessed from the difference during the light exposure and the corresponding clock time 24 h earlier during CR1. Phase-shifts were calculated from the clock time difference in dim light melatonin onset time (DLMO) between CR1 and CR2. Blue-enriched light caused significantly greater suppression of melatonin than standard light ((mean ± SD) 70.9 ± 19.6% and 42.8 ± 29.1%, respectively, p \u3c 0.05). There was no significant difference in the magnitude of phase delay shifts. Blue-enriched light significantly improved subjective alertness (p \u3c 0.05) but no differences were found for objective alertness. These data contribute to the optimization of the short wavelength-enriched spectra and intensities needed for circadian, neuroendocrine and neurobehavioral regulation
Culex tarsalis is a competent vector species for Cache Valley virus
Background: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is
an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially
sheep. The importance of CVV in human public health has recently increased because of the report of severe
neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be
determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex
pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species
responsible for the transmission of CVV from viremic vertebrate hosts to humans.
Results: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this
study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx.
pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from
infected Cx. tarsalis provided evidence supporting its role as a competent vector.
Conclusions: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis
as a competent vector
Post-traumatic stress disorder following childbirth: an update of current issues and recommendations for future research
Objective:
This paper aimed to report the current status of research in the field of post-traumatic stress disorder following childbirth (PTSD FC), and to update the findings of an earlier 2008 paper.
Background:
A group of international researchers, clinicians and service users met in 2006 to establish the state of clinical and academic knowledge relating to PTSD FC. A paper identified four key areas of research knowledge at that time.
Methods:
Fourteen clinicians and researchers met in Oxford, UK to update the previously published paper relating to PTSD FC. The first part of the meeting focused on updating the four key areas identified previously, and the second part on discussing new and emerging areas of research within the field.
Results:
A number of advances have been made in research within the area of PTSD FC. Prevalence is well established within mothers, several intervention studies have been published, and there is growing interest in new areas: staff and pathways; prevention and early intervention; impact on families and children; special populations; and post-traumatic growth.
Conclusion:
Despite progress, significant gaps remain within the PTSD FC knowledge base. Further research continues to be needed across all areas identified in 2006, and five areas were identified which can be seen as ‘new and emerging’. All of these new areas require further extensive research. Relatively little is still known about PTSD FC
Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements
The impact of dust aerosols on the semi-arid climate of Northwest China is analyzed by comparing aerosol and cloud properties derived over the China semi-arid region (hereafter, CSR) and the United States semi-arid region (hereafter, USR) using several years of surface and A-Train satellite observations during active dust event seasons. These regions have similar climatic conditions, but aerosol concentrations are greater over the CSR. Because the CSR is close to two major dust source regions (Taklamakan and Gobi deserts), the aerosols over the CSR not only contain local anthropogenic aerosols (agricultural dust, black carbon and other anthropogenic aerosols), but also include natural dust transported from the source regions. The aerosol optical depth, averaged over a 3-month period, derived from MODIS for the CSR is 0.27, which is 47% higher than that over the USR (0.19). Although transported natural dust only accounts for 53% of this difference, it is a major contributor to the average absorbing aerosol index, which is 27% higher in the CSR (1.07) than in the USR (0.84). During dust event periods, liquid water cloud particle size, optical depth and liquid water path are smaller by 9%, 30% and 33% compared to dust-free conditions, respectively
An analytic expression for the electronic correlation term of the kinetic functional
We propose an analytic formula for the non-local Fisher information
functional, or electronic kinetic correlation term, appearing in the expression
of the kinetic density functional. Such an explicit formula is constructed on
the basis of well-founded physical arguments and a rigorous mathematical
prescription
Quasiparticle properties in a density functional framework
We propose a framework to construct the ground-state energy and density
matrix of an N-electron system by solving selfconsistently a set of
single-particle equations. The method can be viewed as a non-trivial extension
of the Kohn-Sham scheme (which is embedded as a special case). It is based on
separating the Green's function into a quasi-particle part and a background
part, and expressing only the background part as a functional of the density
matrix. The calculated single-particle energies and wave functions have a clear
physical interpretation as quasiparticle energies and orbitals.Comment: 12 pages, 1 figure, to be published in Phys. Rev.
Hyperarousal symptoms after traumatic and nontraumatic births
Background: Measurement is critical in postnatal posttraumatic stress disorder (PTSD) because symptoms may be influenced by normal postnatal phenomena such as physiological changes and fatigue. Objective: This study examined: (1) whether hyperarousal symptoms differ between women who have traumatic or nontraumatic births; (2) whether the construct of hyperarousal is coherent in postnatal women; and (3) whether hyperarousal symptoms are useful for identifying women who have traumatic births or PTSD. Methods: A survey of PTSD symptoms in 1,078 women recruited via the community or Internet who completed an online or paper questionnaire measuring childbirth-related PTSD symptoms between 1 and 36 months after birth. Women who had a traumatic birth as defined by DSM-IV criterion A (n = 458) were compared with women who did not have a traumatic birth (n = 591). Results: A one-factor dimension of hyperarousal was identified that included all five hyperarousal items. Diagnostic criteria of two or more hyperarousal symptoms in the previous week were reported by 75.3% of women with traumatic birth and 50.5% of women with nontraumatic births. The difference in mean hyperarousal symptoms between groups was substantial at 0.76 of a standard deviation (Hedge’s g, CI = 0.64, 0.89). A larger difference was observed between women with and without diagnostic PTSD (g = 1.64, CI 1.46, 1.81). However, receiver operating characteristic analyses showed hyperarousal symptoms have poor specificity and alternative ways of calculating symptoms did not improve this. Comparison with other PTSD symptoms found re-experiencing symptoms were most accurate at identifying women with traumatic births. Conclusions: Results suggest hyperarousal symptoms are associated with traumatic birth and are a coherent construct in postnatal women. However, they have poor specificity and should only be used as part of diagnostic criteria, not as a sole indicator
Electronic stress tensor analysis of hydrogenated palladium clusters
We study the chemical bonds of small palladium clusters Pd_n (n=2-9)
saturated by hydrogen atoms using electronic stress tensor. Our calculation
includes bond orders which are recently proposed based on the stress tensor. It
is shown that our bond orders can classify the different types of chemical
bonds in those clusters. In particular, we discuss Pd-H bonds associated with
the H atoms with high coordination numbers and the difference of H-H bonds in
the different Pd clusters from viewpoint of the electronic stress tensor. The
notion of "pseudo-spindle structure" is proposed as the region between two
atoms where the largest eigenvalue of the electronic stress tensor is negative
and corresponding eigenvectors forming a pattern which connects them.Comment: 22 pages, 13 figures, published online, Theoretical Chemistry
Account
- …
