78 research outputs found
Development of a simplified procedure for rocket engine thrust chamber life prediction with creep
An analytical method for predicting engine thrust chamber life is developed. The method accounts for high pressure differentials and time-dependent creep effects both of which are significant in limiting the useful life of the shuttle main engine thrust chamber. The hot-gas-wall ligaments connecting adjacent cooling channels ribs and separating the coolant flow from the combustion gas are subjected to a high pressure induced primary stress superimposed on an alternating cyclic thermal strain field. The pressure load combined with strain-controlled cycling produces creep ratcheting and consequent bulging and thinning of these ligaments. This mechanism of creep-enhanced ratcheting is analyzed for determining the hot-gas-wall deformation and accumulated strain. Results are confirmed by inelastic finite element analysis. Fatigue and creep rupture damage as well as plastic tensile instability are evaluated as potential failure modes. It is demonstrated for the NARloy Z cases analyzed that when pressure differentials across the ligament are high, creep rupture damage is often the primary failure mode for the cycle times considered
Development of a simplified procedure for thrust chamber life prediction
An analytical design procedure for predicting thrust chamber life considering cyclically induced thinning and bulging of the hot gas wall is developed. The hot gas wall, composed of ligaments connecting adjacent cooling channel ribs and separating the coolant flow from the combustion gas, is subjected to pressure loading and severe thermal cycling. Thermal transients during start up and shut down cause plastic straining through the ligaments. The primary bending stress superimposed on the alternate in-plane cyclic straining causes incremental bulging of the ligaments during each firing cycle. This basic mechanism of plastic ratcheting is analyzed and a method developed for determining ligament deformation and strain. The method uses a yield surface for combined bending and membrane loading to determine the incremental permanent deflection and pregressive thinning near the center of the ligaments which cause the geometry of the ligaments to change as the incremental strains accumulate. Fatigue and tensile instability are affected by these local geometry changes. Both are analyzed and a failure criterion developed
The dynamic stability and nonlinear resonance of a flexible connecting rod: Continuous parameter model
The transverse vibrations of a flexible connecting rod in an otherwise rigid slider-crank mechanism are considered. An analytical approach using the method of multiple scales is adopted and particular emphasis is placed on nonlinear effects which arise from finite deformations. Several nonlinear resonances and instabilities are investigated, and the influences of important system parameters on these resonances are examined in detail.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43330/1/11071_2004_Article_BF00162233.pd
Postnatal evaluation of intrauterine hydronephrosis due to ureteropelvic junction obstruction
The Ideal Ureteral Stent for Antegrade and Retrograde Endopyelotomy: What Would It Be Like?
- …
