908 research outputs found
Near-infrared polarimetric observations of the afterglow of GRB 000301C
Based on near-infrared polarimetric observations we constrain the degree of
linear polarization of the afterglow light of GRB 000301C to less than 30% 1.8
days after the burst.Comment: To appear in: Proc. 20th Texas Symposium on Relativistic
Astrophysics, eds. J. C. Wheeler and H. Marte
Time Variability of Quasars: the Structure Function Variance
Significant progress in the description of quasar variability has been
recently made by employing SDSS and POSS data. Common to most studies is a
fundamental assumption that photometric observations at two epochs for a large
number of quasars will reveal the same statistical properties as well-sampled
light curves for individual objects. We critically test this assumption using
light curves for a sample of 2,600 spectroscopically confirmed quasars
observed about 50 times on average over 8 years by the SDSS stripe 82 survey.
We find that the dependence of the mean structure function computed for
individual quasars on luminosity, rest-frame wavelength and time is
qualitatively and quantitatively similar to the behavior of the structure
function derived from two-epoch observations of a much larger sample. We also
reproduce the result that the variability properties of radio and X-ray
selected subsamples are different. However, the scatter of the variability
structure function for fixed values of luminosity, rest-frame wavelength and
time is similar to the scatter induced by the variance of these quantities in
the analyzed sample. Hence, our results suggest that, although the statistical
properties of quasar variability inferred using two-epoch data capture some
underlying physics, there is significant additional information that can be
extracted from well-sampled light curves for individual objects.Comment: Presented at the "Classification and Discovery in Large Astronomical
Surveys" meeting, Ringberg Castle, 14-17 October, 200
Polarisation of very-low-mass stars and brown dwarfs
Ultra-cool dwarfs of the L spectral type (Teff=1400-2200K) are known to have
dusty atmospheres. Asymmetries of the dwarf surface may arise from
rotationally-induced flattening and dust-cloud coverage, and may result in
non-zero linear polarisation through dust scattering.
We aim to study the heterogeneity of ultra-cool dwarfs' atmospheres and the
grain-size effects on the polarisation degree in a sample of nine late M, L and
early T dwarfs.
We obtain linear polarimetric imaging measurements using FORS1 at the Very
Large Telescope, in the Bessel I filter, and for a subset in the Bessel R and
the Gunn z filters.
We measure a polarisation degree of (0.31+/-0.06)% for LHS102BC. We fail to
detect linear polarisation in the rest of our sample, with upper-limits on the
polarisation degree of each object of 0.09% to 0.76% (95% CL). For those
targets we do not find evidence of large-scale cloud horizontal structure in
our data. Together with previous surveys, our results set the fraction of
ultra-cool dwarfs with detected linear polarisation to (30+10-6)% (1-sigma).
For three brown dwarfs, our observations indicate polarisation degrees
different (at the 3-sigma level) than previously reported, giving hints of
possible variations.
Our results fail to correlate with the current model predictions for
ultra-cool dwarf polarisation for a flattening-induced polarisation, or with
the variability studies for a polarisation induced by an hetereneous cloud
cover. This stresses the intricacy of each of those tasks, but may as well
proceed from complex and dynamic atmospheric processes.Comment: 8 pages, 2 figures, accepted by A&A. Reference problem and a few
typos corrected; improved error treatment of Zapatero Osorio et al (2005)
data, leading to minor differences in the result
Towards real-time classification of astronomical transients
Exploration of time domain is now a vibrant area of research in astronomy, driven by the advent of digital synoptic sky surveys. While panoramic surveys can detect variable or transient events, typically some follow-up observations are needed; for short-lived phenomena, a rapid response is essential. Ability to automatically classify and prioritize transient events for follow-up studies becomes critical as the data rates increase. We have been developing such methods using the data streams from the Palomar-Quest survey, the Catalina Sky Survey and others, using the VOEventNet framework. The goal is to automatically classify transient events, using the new measurements, combined with archival data (previous and multi-wavelength measurements), and contextual information (e.g., Galactic or ecliptic latitude, presence of a possible host galaxy nearby, etc.); and to iterate them dynamically as the follow-up data come in (e.g., light curves or colors). We have been investigating Bayesian methodologies for classification, as well as discriminated follow-up to optimize the use of available resources, including Naive Bayesian approach, and the non-parametric Gaussian process regression. We will also be deploying variants of the traditional machine learning techniques such as Neural Nets and Support Vector Machines on datasets of reliably classified transients as they build up
CLOUDS search for variability in brown dwarf atmospheres
Context: L-type ultra-cool dwarfs and brown dwarfs have cloudy atmospheres
that could host weather-like phenomena. The detection of photometric or
spectral variability would provide insight into unresolved atmospheric
heterogeneities, such as holes in a global cloud deck.
Aims: It has been proposed that growth of heterogeneities in the global cloud
deck may account for the L- to T-type transition as brown dwarf photospheres
evolve from cloudy to clear conditions. Such a mechanism is compatible with
variability. We searched for variability in the spectra of five L6 to T6 brown
dwarfs in order to test this hypothesis.
Methods: We obtained spectroscopic time series using VLT/ISAAC, over
0.99-1.13um, and IRTF/SpeX for two of our targets, in J, H and K bands. We
search for statistically variable lines and correlation between those.
Results: High spectral-frequency variations are seen in some objects, but
these detections are marginal and need to be confirmed. We find no evidence for
large amplitude variations in spectral morphology and we place firm upper
limits of 2 to 3% on broad-band variability, on the time scale of a few hours.
The T2 transition brown dwarf SDSS J1254-0122 shows numerous variable features,
but a secure variability diagnosis would require further observations.
Conclusions: Assuming that any variability arises from the rotation of
patterns of large-scale clear and cloudy regions across the surface, we find
that the typical physical scale of cloud cover disruption should be smaller
than 5-8% of the disk area for four of our targets. The possible variations
seen in SDSS J1254-0122 are not strong enough to allow us to confirm the cloud
breaking hypothesis.Comment: 17 pages, 14 figures, accepted by A&
Brown dwarfs and very low mass stars in the Praesepe open cluster: a dynamically unevolved mass function?
[Abridged] In this paper, we present the results of a photometric survey to
identify low mass and brown dwarf members of the old open cluster Praesepe (age
of 590[+150][-120]Myr and distance of 190[+6.0][-5.8]pc) and use this to infer
its mass function which we compare with that of other clusters. We have
performed an optical (Ic-band) and near-infrared (J and Ks-band) photometric
survey of Praesepe with a spatial coverage of 3.1deg^2. With 5sigma detection
limits of Ic=23.4 and J=20.0, our survey is sensitive to objects with masses
from about 0.6 to 0.05Msol. The mass function of Praesepe rises from 0.6Msol
down to 0.1Msol and then turns-over at ~0.1Msol. The rise observed is in
agreement with the mass function derived by previous studies, including a
survey based on proper motion and photometry. Comparing our mass function with
that for another open cluster with a similar age, the Hyades (age ~ 600Myr), we
see a significant difference. Possible reasons are that dynamical evaporation
has not influenced the Hyades and Praesepe in the same way, or that the
clusters did not have the same initial mass function, or that dynamical
interactions have modified the evolution of one or both clusters. Although a
difference in the binary fractions of the clusters could cause the observed
(i.e. system) mass functions to differ, measurements in the literature give no
evidence for a significant difference in the binary fractions of the two
clusters. Of our cluster candidates, six have masses predicted to be equal to
or below the stellar/substellar boundary at 0.072Msol.Comment: 11 pages, 11 figures, accepted for publication in A&A. Higher
resolution of Figures 2-3-4-5 in A&A published version. Revised version
corrected for Englis
Three-Dimensional Spectral Classification of Low-Metallicity Stars Using Artificial Neural Networks
We explore the application of artificial neural networks (ANNs) for the
estimation of atmospheric parameters (Teff, logg, and [Fe/H]) for Galactic F-
and G-type stars. The ANNs are fed with medium-resolution (~ 1-2 A) non
flux-calibrated spectroscopic observations. From a sample of 279 stars with
previous high-resolution determinations of metallicity, and a set of (external)
estimates of temperature and surface gravity, our ANNs are able to predict Teff
with an accuracy of ~ 135-150 K over the range 4250 <= Teff <= 6500 K, logg
with an accuracy of ~ 0.25-0.30 dex over the range 1.0 <= logg <= 5.0 dex, and
[Fe/H] with an accuracy ~ 0.15-0.20 dex over the range -4.0 <= [Fe/H] <= +0.3.
Such accuracies are competitive with the results obtained by fine analysis of
high-resolution spectra. It is noteworthy that the ANNs are able to obtain
these results without consideration of photometric information for these stars.
We have also explored the impact of the signal-to-noise ratio (S/N) on the
behavior of ANNs, and conclude that, when analyzed with ANNs trained on spectra
of commensurate S/N, it is possible to extract physical parameter estimates of
similar accuracy with stellar spectra having S/N as low as 13. Taken together,
these results indicate that the ANN approach should be of primary importance
for use in present and future large-scale spectroscopic surveys.Comment: 51 pages, 11 eps figures, uses aastex; to appear in Ap
Representing complex data using localized principal components with application to astronomical data
Often the relation between the variables constituting a multivariate data
space might be characterized by one or more of the terms: ``nonlinear'',
``branched'', ``disconnected'', ``bended'', ``curved'', ``heterogeneous'', or,
more general, ``complex''. In these cases, simple principal component analysis
(PCA) as a tool for dimension reduction can fail badly. Of the many alternative
approaches proposed so far, local approximations of PCA are among the most
promising. This paper will give a short review of localized versions of PCA,
focusing on local principal curves and local partitioning algorithms.
Furthermore we discuss projections other than the local principal components.
When performing local dimension reduction for regression or classification
problems it is important to focus not only on the manifold structure of the
covariates, but also on the response variable(s). Local principal components
only achieve the former, whereas localized regression approaches concentrate on
the latter. Local projection directions derived from the partial least squares
(PLS) algorithm offer an interesting trade-off between these two objectives. We
apply these methods to several real data sets. In particular, we consider
simulated astrophysical data from the future Galactic survey mission Gaia.Comment: 25 pages. In "Principal Manifolds for Data Visualization and
Dimension Reduction", A. Gorban, B. Kegl, D. Wunsch, and A. Zinovyev (eds),
Lecture Notes in Computational Science and Engineering, Springer, 2007, pp.
180--204,
http://www.springer.com/dal/home/generic/search/results?SGWID=1-40109-22-173750210-
The substellar mass function in the central region of the open cluster Praesepe from deep LBT observations
Studies of the mass function (MF) of open clusters of different ages allow us
to probe the efficiency with which brown dwarfs (BDs) are evaporated from
clusters to populate the field. Surveys in old clusters (age > 100 Myr) do not
suffer so severely from several problems encountered in young clusters, such as
intra-cluster extinction and large uncertainties in BD models. Here we present
the results of a deep photometric survey to study the MF of the old open
cluster Praesepe (age 590 Myr and distance 190 pc), down to a 5 sigma detection
limit at i~25.6 mag (~40M_Jup). We identify 62 cluster member candidates, of
which 40 are substellar, from comparison with predictions from a dusty
atmosphere model. The MF rises from the substellar boundary until ~60M_Jup and
then declines. This is quite different from the form inferred for other open
clusters older than 50 Myr, but seems to be similar to those found in very
young open cluster, whose MFs peak at ~10M_Jup. Either Praesepe really does
have a different MF from other clusters or they had similar initial MFs but
have differed in their dynamical evolution. We further have identified six
foreground T dwarf candidates towards Praesepe, which require follow-up
spectroscopy to confirm their nature.Comment: 8 pages, 5 figures, to appear in the online proceedings of the Cool
Stars 16 conferenc
Search for free-floating planetary-mass objects in the Pleiades
(Abridged) We aim at identifying the least massive population of the solar
metallicity, young (120 Myr), nearby (133.5 pc) Pleiades star cluster with the
ultimate goal of understanding the physical properties of intermediate-age,
free-floating, low-mass brown dwarfs and giant planetary-mass objects, and
deriving the cluster substellar mass function across the deuterium-burning mass
limit at ~0.012 Msol. We performed a deep photometric and astrometric J- and
H-band survey covering an area of ~0.8 deg^2. The images with completeness and
limiting magnitudes of J,H ~ 20.2 and ~ 21.5 mag were acquired ~9 yr apart
(proper motion precision of +/-6 mas/yr). J- and H-band data were complemented
with Z, K, and mid-infrared magnitudes up to 4.6 micron coming from UKIDSS,
WISE, and follow-up observations of our own. Pleiades member candidates were
selected to have proper motions compatible with that of the cluster, and colors
following the known Pleiades sequence in the interval J = 15.5-8.8 mag, and
Z_UKIDSS - J > 2.3 mag or Z nondetections for J > 18.8 mag. We found a neat
sequence of astrometric and photometric Pleiades substellar member candidates
in the intervals J = 15.5-21.2 mag and ~0.072-0.008 Msol. The faintest objects
show very red near- and mid-infrared colors exceeding those of field
high-gravity dwarfs by >0.5 mag. The Pleiades photometric sequence does not
show any color turn-over because of the presence of photospheric methane
absorption down to J = 20.3 mag, which is about 1 mag fainter than predicted by
the color-computed models. Pleiades brown dwarfs have a proper motion
dispersion of 6.4-7.5 mas/yr and are dynamically relaxed at the age of the
cluster. The Pleiades mass function extends down to the deuterium burning-mass
threshold, with a slope fairly similar to that of other young star clusters and
stellar associations.Comment: Accepted for publication in A&A. 16 page
- …
