3,860 research outputs found
Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows
The impact of 9 single nucleotide polymorphisms (SNP) in the leptin (LEP), leptin receptor (LEPR), growth hormone receptor (GHR), and diacylglycerol acyltransferase (DGAT1) gene loci on daily milk production, feed intake, and feed conversion, and weekly measures of live weight, BCS, and body energy traits was evaluated using genetic and phenotypic data on 571 Holstein cows raised at the Langhill Dairy Cattle Research Center in Scotland. Six SNP were typed on the LEP gene and 1 on each of the other 3 loci. Of the 6 LEP SNP, 3 were in very high linkage disequilibrium, meaning there is little gain in typing all of them in the future. Seven LEP haplotypes were identified by parsimony-based analyses. Random-regression allele-substitution models were used to assess the impact of each SNP allele or haplotype on the traits of interest. Diacylglycerol acyltransferase had a significant effect on milk yield, whereas GHR significantly affected feed intake, feed conversion, and body energy traits. There was also evidence of dominance in allelic effects on milk yield and BCS. The LEP haplotype CCGTTT (corresponding to leptin SNP C207T, C528T, A1457G, C963T, A252T, and C305T, respectively) significantly affected milk yield and feed and dry matter intake. Animals carrying this haplotype produced 3.13 kg more milk daily and consumed 4.64 kg more feed. Furthermore, they tended to preserve more energy than average. Such results may be used to facilitate genetic selection in animal breeding programs.</p
Thermodynamic glass transition in a spin glass without time-reversal symmetry
Spin glasses are a longstanding model for the sluggish dynamics that appears
at the glass transition. However, spin glasses differ from structural glasses
for a crucial feature: they enjoy a time reversal symmetry. This symmetry can
be broken by applying an external magnetic field, but embarrassingly little is
known about the critical behaviour of a spin glass in a field. In this context,
the space dimension is crucial. Simulations are easier to interpret in a large
number of dimensions, but one must work below the upper critical dimension
(i.e., in d<6) in order for results to have relevance for experiments. Here we
show conclusive evidence for the presence of a phase transition in a
four-dimensional spin glass in a field. Two ingredients were crucial for this
achievement: massive numerical simulations were carried out on the Janus
special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure
Janus II: a new generation application-driven computer for spin-system simulations
This paper describes the architecture, the development and the implementation
of Janus II, a new generation application-driven number cruncher optimized for
Monte Carlo simulations of spin systems (mainly spin glasses). This domain of
computational physics is a recognized grand challenge of high-performance
computing: the resources necessary to study in detail theoretical models that
can make contact with experimental data are by far beyond those available using
commodity computer systems. On the other hand, several specific features of the
associated algorithms suggest that unconventional computer architectures, which
can be implemented with available electronics technologies, may lead to order
of magnitude increases in performance, reducing to acceptable values on human
scales the time needed to carry out simulation campaigns that would take
centuries on commercially available machines. Janus II is one such machine,
recently developed and commissioned, that builds upon and improves on the
successful JANUS machine, which has been used for physics since 2008 and is
still in operation today. This paper describes in detail the motivations behind
the project, the computational requirements, the architecture and the
implementation of this new machine and compares its expected performances with
those of currently available commercial systems.Comment: 28 pages, 6 figure
To explore or to exploit? Learning humans' behaviour to maximize interactions with them
Assume a robot operating in a public space (e.g., a library, a museum) and serving visitors as a companion, a guide or an information stand. To do that, the robot has to interact with humans, which presumes that it actively searches for humans in order to interact with them. This paper addresses the problem how to plan robot's actions in order to maximize the number of such interactions in the case human behavior is not known in advance. We formulate this problem as the exploration/exploitation problem and design several strategies for the robot. The main contribution of the paper than lies in evaluation and comparison of the designed strategies on two datasets. The evaluation shows interesting properties of the strategies, which are discussed
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition
Inositol phosphates (InsPs) are signaling molecules with multiple roles in cells. In particular Graphic (InsP6) is involved in mRNA export and editing or chromatin remodeling among other events. InsP6 accumulates as mixed salts (phytate) in storage tissues of plants and plays a key role in their physiology. Human diets that are exclusively grain-based provide an excess of InsP6 that, through chelation of metal ions, may have a detrimental effect on human health. Ins(1,3,4,5,6)P5 2-kinase (InsP5 2-kinase or Ipk1) catalyses the synthesis of InsP6 from InsP5 and ATP, and is the only enzyme that transfers a phosphate group to the axial 2-OH of the myo-inositide. We present the first structure for an InsP5 2-kinase in complex with both substrates and products. This enzyme presents a singular structural region for inositide binding that encompasses almost half of the protein. The key residues in substrate binding are identified, with Asp368 being responsible for recognition of the axial 2-OH. This study sheds light on the unique molecular mechanism for the synthesis of the precursor of inositol pyrophosphates
Nature of the spin-glass phase at experimental length scales
We present a massive equilibrium simulation of the three-dimensional Ising
spin glass at low temperatures. The Janus special-purpose computer has allowed
us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc.
We demonstrate the relevance of equilibrium finite-size simulations to
understand experimental non-equilibrium spin glasses in the thermodynamical
limit by establishing a time-length dictionary. We conclude that
non-equilibrium experiments performed on a time scale of one hour can be
matched with equilibrium results on L=110 lattices. A detailed investigation of
the probability distribution functions of the spin and link overlap, as well as
of their correlation functions, shows that Replica Symmetry Breaking is the
appropriate theoretical framework for the physically relevant length scales.
Besides, we improve over existing methodologies to ensure equilibration in
parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for
publication in the Journal of Statistical Mechanic
On the integrability of symplectic Monge-Amp\'ere equations
Let u be a function of n independent variables x^1, ..., x^n, and U=(u_{ij})
the Hessian matrix of u. The symplectic Monge-Ampere equation is defined as a
linear relation among all possible minors of U. Particular examples include the
equation det U=1 governing improper affine spheres and the so-called heavenly
equation, u_{13}u_{24}-u_{23}u_{14}=1, describing self-dual Ricci-flat
4-manifolds. In this paper we classify integrable symplectic Monge-Ampere
equations in four dimensions (for n=3 the integrability of such equations is
known to be equivalent to their linearisability). This problem can be
reformulated geometrically as the classification of 'maximally singular'
hyperplane sections of the Plucker embedding of the Lagrangian Grassmannian. We
formulate a conjecture that any integrable equation of the form F(u_{ij})=0 in
more than three dimensions is necessarily of the symplectic Monge-Ampere type.Comment: 20 pages; added more details of proof
The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority
We perform equilibrium parallel-tempering simulations of the 3D Ising
Edwards-Anderson spin glass in a field. A traditional analysis shows no signs
of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour
of the model: Averages over all the data only describe the behaviour of a small
fraction of it. Therefore we develop a new approach to study the equilibrium
behaviour of the system, by classifying the measurements as a function of a
conditioning variate. We propose a finite-size scaling analysis based on the
probability distribution function of the conditioning variate, which may
accelerate the convergence to the thermodynamic limit. In this way, we find a
non-trivial spectrum of behaviours, where a part of the measurements behaves as
the average, while the majority of them shows signs of scale invariance. As a
result, we can estimate the temperature interval where the phase transition in
a field ought to lie, if it exists. Although this would-be critical regime is
unreachable with present resources, the numerical challenge is finally well
posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results
unchanged
- …
