2,027 research outputs found

    A pilot study of nurse-led, home monitoring for patients with chronic respiratory failure and with mechanical ventilation assistance.

    Get PDF
    We assessed the feasibility of telemedicine for home monitoring of 45 patients with chronic respiratory failure (CRF) discharged from hospital. The patients transmitted pulsed arterial saturation (pSat) data via a telephone modem to a receiving station where a nurse was available for a teleconsultation. A respiratory physician was also available. Scheduled and ad hoc appointments were conducted. Thirty-five patients were on home mechanical ventilation, 13 with invasive and 22 with non-invasive devices. The main diagnosis was chronic obstructive pulmonary disease (COPD). The follow-up period was 176 days (SD 69). In all, 376 calls for scheduled consultations were received and 83 ad hoc consultations were requested by the patients. The actions taken were: 55 therapy modifications, 19 hospitalizations in a respiratory department for decompensated CRF, three hospitalizations in an intensive care unit (ICU), 22 requests for further investigations, 25 contacts with the general practitioner (GP), 66 demands for respiratory consultations and 10 calls for the emergency department. The mean time recorded for the 459 calls was 16 min/patient/week. In 82% of calls, a pSat recording was received successfully. The nurse time required to train the users in the operation of the pSat instrument was high (mean time 30 min). However, the results showed that home monitoring was feasible, and useful for titration of oxygen, mechanical ventilation setting and stabilization of relapse

    Conditional Variational Autoencoder for Learned Image Reconstruction

    Get PDF
    Learned image reconstruction techniques using deep neural networks have recently gained popularity and have delivered promising empirical results. However, most approaches focus on one single recovery for each observation, and thus neglect information uncertainty. In this work, we develop a novel computational framework that approximates the posterior distribution of the unknown image at each query observation. The proposed framework is very flexible: it handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets. Once the network is trained using the conditional variational autoencoder loss, it provides a computationally efficient sampler for the approximate posterior distribution via feed-forward propagation, and the summarizing statistics of the generated samples are used for both point-estimation and uncertainty quantification. We illustrate the proposed framework with extensive numerical experiments on positron emission tomography (with both moderate and low-count levels) showing that the framework generates high-quality samples when compared with state-of-the-art methods

    Detection of the temporal variation of the sun's cosmic ray shadow with the IceCube detector

    Get PDF
    We report on the observation of a deficit in the cosmic ray flux from the directions of the Moon and Sun with five years of data taken by the IceCube Neutrino Observatory. Between 2010 May and 2011 May the IceCube detector operated with 79 strings deployed in the glacial ice at the South Pole, and with 86 strings between 2011 May and 2015 May. A binned analysis is used to measure the relative deficit and significance of the cosmic ray shadows. Both the cosmic ray Moon and Sun shadows are detected with high statistical significance (> 10 sigma) for each year. The results for the Moon shadow are consistent with previous analyses and verify the stability of the IceCube detector over time. This work represents the first observation of the Sun shadow with the IceCube detector. We show that the cosmic ray shadow of the Sun varies with time. These results make it possible to study cosmic ray transport near the Sun with future data from IceCube

    INFN What Next: Ultra-relativistic Heavy-Ion Collisions

    Full text link
    This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target programme using the LHC ion beams and on the Future Circular Collider.Comment: 99 pages, 56 figure
    corecore