129 research outputs found
Suitability of PLLA as piezoelectric substrates for tissue engineering evidenced by microscopy techniques
Since the discovery of the piezoelectric character of bone, the suitability of some piezoelectric materials have been studied for bone repair; they are thought to act like transducers converting the mechanical energy of skeletal deformation in electrical stimuli capable of controlling osteogenic growth. The mechanisms underlying this process are far from being understood and systematic studies at a local scale are required. Atomic force microscopy (AFM) is a unique way to observe phenomena at the nanoscale and liquid imaging provides a unique tool to assess biological phenomena at the nanoscale. So in this study, aiming at a better understanding of the role of piezoelectricity in the osteogenic growth, the interaction between a poled piezoelectric material, in this case poly (L-lactic) acid and an adhesion promoting protein, the fibronectin, and bone-like cells is evaluated by scanning probe microscopy and confocal laser scanning microscopy (CLSM). © Microscopy Society of America 2012.(undefined
Control of developmentally primed erythroid genes by combinatorial co-repressor actions
How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2-IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation
Liquefaction optimization of Crataegus monogyna Jacq
The objective of this work was to evaluate the potentiality of Crataegus monogyna Jacq. residues to be liquefied
by polyhydric alcohols and the chemical transformations observed in this process with subsequent use to produce polyurethane
foams. The variations on liquefaction yield were determined at different temperature, time, material/solvent ratio and
granulometry.
Results show that liquefaction performed at 180 °C with a 1:10 material/solvent ratio increases along time, reaching a
maximum at 60 min. Similarly, liquefactions made during 60 min with a 1:10 material/solvent ratio show that there is an
increase in liquefaction yield with the increase in temperature until 180 °C. A higher temperature could increase the
liquefaction yield but would lead to a higher energy consumption in the process. There seems to be no significative advantage
in increasing material/solvent ratio above 1:7, although the liquefaction yield increases for higher ratios. Granulometry testing
shows that the smaller the particle the best is the liquefaction percentage. It was concluded that the best liquefaction yield, of
approximately 81%, was obtained with a temperature of 180 °C, for 60 min and particle size <80 mesh for Crataegus monogyna
Jacq. This material has good properties to be converted in a liquid mixture that can be used later, on the production of
polyurethane foams.info:eu-repo/semantics/publishedVersio
Peripherally Inserted Central Catheter Placement in a Cardiology Ward: A Focus Group Study of Nurses’ Perspectives
info:eu-repo/semantics/publishedVersio
Multicaloric effect in a multiferroic composite of Gd-5(Si,Ge)(4) microparticles embedded into a ferroelectric PVDF matrix
CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOThe coupling between electric, magnetic and elastic features in multiferroic materials is an emerging field in materials science, with important applications on alternative solid-state cooling technologies, energy harvesting and sensors/actuators. In this direction, we developed a thorough investigation of a multiferroic composite, comprising magnetocaloric/magnetostrictive Gd5Si2.4Ge1.6 microparticles blended into a piezo- and pyroelectric poly(vinylidene) fluoride (PVDF) matrix. Using a simple solvent casting technique, the formation and stabilization of PVDF electroactive phases are improved when the filler content increases from 2 to 12 weight fraction (wt.%). This effect greatly contributes to the magnetoelectric (ME) coupling, with the ME coefficient alpha(ME) increasing from 0.3 V/cm.Oe to 2.2 V/cm.Oe, by increasing the amount of magnetic material. In addition, magnetic measurements revealed that the ME-coupling has influenced the magnetocaloric effect via a contribution from the electroactive polymer and hence leading to a multicaloric effect. These results contribute to the development of multifunctional systems for novel technologies.9CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO203180/2014-3This work is funded by FEDER funds through the COMPETE 2020 Programme and National Funds throught FCT -Portuguese Foundation for Science and Technology under the projects POCI-01-0145-FEDER-029454, POCI-01-0145-FEDER-032527 and UID/FIS/04564/2016. This work was also supported by NECL with the project NORTE-01-0145-FEDER-022096 and by the European Union Horizon -2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 734801. The authors acknowledge K. Pirota and F. Beron for the FTIR measurements performed at Unicamp in Brazil. Special thanks to Dr. A. Aliev for help in automatizing the ME experiments at Amirkhanov Institute of Physics and the helpful discussions. Federal Fluminense University, Brazil, permanent address for MSR; Aveiro University, Portugal, temporary address during this work for MSR. VMA thanks the CNPq for the Grant No. 203180/2014-3. A.A. acknowledges Russian Science Foundation for support magnetoelectric studies (grant No. 18-79-10176). J.H. Belo thanks FCT for Grant No. SFRH/BD/88440/2012, Project PTDC/FISMA/31302/2017, and his contract No. DL57/2016 reference SFRH-BPD-87430/2012. Finally, the discussion of results has been made possible through the mobility grant provided by the 5 top 100 Russian Academic Excellence Project at the Immanuel Kant Baltic Federal University
DIGISER. Digital Innovation in Governance and Public Service Provision
Digital Innovation Challenges
In view of the increasingly intense pressures on the public sector to address the challenges of our time, governments and other public entities are gradually adopting digital innovation, seeking to promote quality public services. Digital technologies and capabilities create opportunities to re-organise public service inno- vation and delivery in ways that reduce cost and increase quality, proactiveness and citizen-centricity.
Multilevel governance, networks and other collaboration systems (at local, regional, national and interna- tional level) are gaining importance as key drivers of this process of digital innovation and transformation. The link to the innovation ecosystem, including all sectors of activity, both private and public (e.g., academia, industry, business, citizens and governments) appears as fundamental in all phases of the creation, devel- opment, implementation and maintenance of public services and policy making. Information and communi- cation technologies are conceived as essential elements to support the creation and sustainability of these collaboration processes.
In an era in which information gains relevance in the management of the territory and allows new power relations, the expectations of citizens are increasingly demanding and specific. Considering the develop- ments of recent years, such as the economic, social and health crises, the pressure placed on the resolution of global challenges is progressively transferred to the scope of cities. There are several elements that con- tribute to the importance of cities in the digital innovation transformation process namely buying- power, being closer to citizens and being able to work across different sectors. In fact, urban territories increasingly represent a greater number of citizens - in Europe, for example, they correspond to 75% of the population - have greater autonomy in management, worldwide they contribute to 80% of the global GDP and have the potential to provide a major contribution to the resolution of global challenges.
The balance between change (promoted by the digital innovation strategies) and stability (driven by organi- sational inertia) needs to be handled carefully. The transformation process has to be based on a long-term strategy and to occur in a sustainable way, by focusing on learning experiences and knowledge and tech- nology transfer, while being sensitive to the local context to ensure improvement.
At the European level, the Digital Transition has been considered a main goal for the next decade. The EU launched the European Green Deal and Europe Fit for the Digital Age, a twin initiative, which links green and digital transition. The vision for the EU ́s digital decade is reflected in the Digital Compass 2030 and includes 4 cardinal points: skills, government, infrastructure and Business. With the aim of having 100% of the key public services online by 2030, the digital compass ensures that digital will contribute in a positive way to improve citizens quality of life while reducing the resources spent. To support this vision, and by understanding the importance of community-led data-driven solutions and the potential of collaborative ap- proaches, several initiatives are being implemented. The Living-in.EU movement, for example, points out the European Way’ where multi-level governance and co-creation processes support the development of a cohesive digital Europe in the path towards digital transition. Another initiative contributing to this strategy is promoted by Open & Agile Smart Cities which is connecting cities through Minimal Interoperability Mech- anisms (MIMs) - “a set of practical capabilities based on open technical specifications that allow cities and communities to replicate and scale solutions globally”. The MIMs contribute to the creation of the European Single Market by providing a common technical ground for the procurement and deployment of urban data platforms and end-to-end solutions in cities
Pregnancy in the mature adult mouse does not alter the proportion of mammary epithelial stem/progenitor cells
Introduction
In humans, an early full-term pregnancy reduces lifetime breast cancer risk by up to 50% whereas a later pregnancy (>35 years old) can increase lifetime risk. Several mechanisms have been suggested, including changes in levels of circulating hormones, changes in the way the breast responds to these hormones, changes in gene expression programmes which may alter susceptibility to transformation and changes to mammary stem cell numbers or behaviour. Previous studies have shown that the mammary tissue isolated from both virgin and parous mice has the ability to repopulate a cleared mammary fat pad in transplant experiments. Limited dilution transplant assays have demonstrated that early pregnancy (at 5 weeks of age) reduces stem/progenitor cell numbers in the mouse mammary epithelium by twofold. However, the effects on stem/progenitor cell numbers in the mammary epithelium of a pregnancy in older animals have not yet been tested.
Methods
Mice were put through a full-term pregnancy at 9 weeks of age, when the mammary epithelium is mature. The total mammary epithelium was purified from parous 7-week post-lactation and age-matched virgin mice and analysed by flow cytometry and limiting dilution cleared fat pad transplants.
Results
There were no significant differences in the proportions of different mammary epithelial cell populations or numbers of CD24+/Low Sca-1- CD49fHigh cells (stem cell enriched basal mammary epithelial compartment). There was no significant difference in stem/progenitor cell frequency based on limiting dilution transplants between the parous and age-matched virgin epithelium.
Conclusions
Although differences between parous and virgin mammary epithelium at later time points post lactation or following multiple pregnancies cannot be ruled out, there are no differences in stem/progenitor cell numbers between mammary epithelium isolated from parous animals which were mated at 9 weeks old and virgin animals. However, a recent report has suggested that animals that were mated at 5 weeks old have a twofold reduction in stem/progenitor cell numbers. This is of interest given the association between early, but not late, pregnancy and breast cancer risk reduction in humans. However, a mechanistic connection between stem cell numbers and breast cancer risk remains to be established
- …
