16,449 research outputs found
The Equivalence Principle Revisited
A precise formulation of the strong Equivalence Principle is essential to the
understanding of the relationship between gravitation and quantum mechanics.
The relevant aspects are reviewed in a context including General Relativity,
but allowing for the presence of torsion. For the sake of brevity, a concise
statement is proposed for the Principle: "An ideal observer immersed in a
gravitational field can choose a reference frame in which gravitation goes
unnoticed". This statement is given a clear mathematical meaning through an
accurate discussion of its terms. It holds for ideal observers (time-like
smooth non-intersecting curves), but not for real, spatially extended
observers. Analogous results hold for gauge fields. The difference between
gravitation and the other fundamental interactions comes from their distinct
roles in the equation of force.Comment: RevTeX, 18 pages, no figures, to appear in Foundations of Physic
Detecting transit signatures of exoplanetary rings using SOAP3.0
CONTEXT. It is theoretically possible for rings to have formed around
extrasolar planets in a similar way to that in which they formed around the
giant planets in our solar system. However, no such rings have been detected to
date.
AIMS: We aim to test the possibility of detecting rings around exoplanets by
investigating the photometric and spectroscopic ring signatures in
high-precision transit signals.
METHODS: The photometric and spectroscopic transit signals of a ringed planet
is expected to show deviations from that of a spherical planet. We used these
deviations to quantify the detectability of rings. We present SOAP3.0 which is
a numerical tool to simulate ringed planet transits and measure ring
detectability based on amplitudes of the residuals between the ringed planet
signal and best fit ringless model.
RESULTS: We find that it is possible to detect the photometric and
spectroscopic signature of near edge-on rings especially around planets with
high impact parameter. Time resolution 7 mins is required for the
photometric detection, while 15 mins is sufficient for the spectroscopic
detection. We also show that future instruments like CHEOPS and ESPRESSO, with
precisions that allow ring signatures to be well above their noise-level,
present good prospects for detecting rings.Comment: 13 pages, 16 figures, 2 tables , accepted for publication in A&
Disorder-induced double resonant Raman process in graphene
An analytical study is presented of the double resonant Raman scattering
process in graphene, responsible for the D and D features in the
Raman spectra. This work yields analytical expressions for the D and
D integrated Raman intensities that explicitly show the dependencies
on laser energy, defect concentration, and electronic lifetime. Good agreement
is obtained between the analytical results and experimental measurements on
samples with increasing defect concentrations and at various laser excitation
energies. The use of Raman spectroscopy to identify the nature of defects is
discussed. Comparison between the models for the edge-induced and the
disorder-induced D band intensity suggests that edges or grain boundaries can
be distinguished from disorder by the different dependence of their Raman
intensity on laser excitation energy. Similarly, the type of disorder can
potentially be identified not only by the intensity ratio
, but also by its laser energy
dependence. Also discussed is a quantitative analysis of quantum interference
effects of the graphene wavefunctions, which determine the most important
phonon wavevectors and scattering processes responsible for the D and
D bands.Comment: 10 pages, 4 figure
Transient Nucleation near the Mean-Field Spinodal
Nucleation is considered near the pseudospinodal in a one-dimensional
model with a non-conserved order parameter and long-range
interactions. For a sufficiently large system or a system with slow relaxation
to metastable equilibrium, there is a non-negligible probability of nucleation
occurring before reaching metastable equilibrium. This process is referred to
as transient nucleation. The critical droplet is defined to be the
configuration of maximum likelihood that is dynamically balanced between the
metastable and stable wells. Time-dependent droplet profiles and nucleation
rates are derived, and theoretical results are compared to computer simulation.
The analysis reveals a distribution of nucleation times with a distinct peak
characteristic of a nonstationary nucleation rate. Under the quench conditions
employed, transient critical droplets are more compact than the droplets found
in metastable equilibrium simulations and theoretical predictions.Comment: 7 Pages, 5 Figure
Gravitation as Anholonomy
A gravitational field can be seen as the anholonomy of the tetrad fields.
This is more explicit in the teleparallel approach, in which the gravitational
field-strength is the torsion of the ensuing Weitzenboeck connection. In a
tetrad frame, that torsion is just the anholonomy of that frame. The infinitely
many tetrad fields taking the Lorentz metric into a given Riemannian metric
differ by point-dependent Lorentz transformations. Inertial frames constitute a
smaller infinity of them, differing by fixed-point Lorentz transformations.
Holonomic tetrads take the Lorentz metric into itself, and correspond to
Minkowski flat spacetime. An accelerated frame is necessarily anholonomic and
sees the electromagnetic field strength with an additional term.Comment: RevTeX4, 10 pages, no figures. To appear in Gen. Rel. Gra
- …
