5,492 research outputs found
Stable Isotropic Cosmological Singularities in Quadratic Gravity
We show that, in quadratic lagrangian theories of gravity, isotropic
cosmological singularities are stable to the presence of small scalar, vector
and tensor inhomogeneities. Unlike in general relativity, a particular exact
isotropic solution is shown to be the stable attractor on approach to the
initial cosmological singularity. This solution is also known to act as an
attractor in Bianchi universes of types I, II and IX, and the results of this
paper reinforce the hypothesis that small inhomogeneous and anisotropic
perturbations of this attractor form part of the general cosmological solution
to the field equations of quadratic gravity. Implications for the existence of
a 'gravitational entropy' are also discussed.Comment: 18 pages, no figure
Cosmological Bounds on Spatial Variations of Physical Constants
We derive strong observational limits on any possible large-scale spatial
variation in the values of physical 'constants' whose space-time evolution is
driven by a scalar field. The limits are imposed by the isotropy of the
microwave background on large angular scales in theories which describe space
and time variations in the fine structure constant, the electron-proton mass
ratio, and the Newtonian gravitational constant, G. Large-scale spatial
fluctuations in the fine structure constant are bounded by 2x10^-9 and
1.2x10^-8 in the BSBM and VSL theories respectively, fluctuations in the
electron-proton mass ratio by 9x10^-5 in the BM theory and fluctuations in G by
3.6x10^-10 in Brans-Dicke theory. These derived bounds are significantly
stronger than any obtainable by direct observations of astrophysical objects at
the present time.Comment: 13 pages, 1 table, typos corrected, refs added. Published versio
Thermal-fatigue and oxidation resistance of cobalt-modified Udimet 700 alloy
Comparative thermal-fatigue and oxidation resistances of cobalt-modified wrought Udimet 700 alloy (obtained by reducing the cobalt level by direct substitution of nickel) were determined from fluidized-bed tests. Bed temperatures were 1010 and 288 C (1850 and 550 C) for the first 5500 symmetrical 6-min cycles. From cycle 5501 to the 14000-cycle limit of testing, the heating bed temperature was increased to 1050 C (1922 F). Cobalt levels between 0 and 17 wt% were studied in both the bare and NiCrAlY overlay coated conditions. A cobalt level of about 8 wt% gave the best thermal-fatigue life. The conventional alloy specification is for 18.5% cobalt, and hence, a factor of 2 in savings of cobalt could be achieved by using the modified alloy. After 13500 cycles, all bare cobalt-modified alloys lost 10 to 13 percent of their initial weight. Application of the NiCrAlY overlay coating resulted in weight losses of 1/20 to 1/100 of that of the corresponding bare alloy
Anthropic Reasons for Non-Zero Flatness and Lambda
In some cosmological theories with varying constants there are anthropic
reasons why the expansion of the universe must not be too {\it close} to
flatness or the cosmological constant too close to zero. Using exact theories
which incorporate time-variations in and in we show how the
presence of negative spatial curvature and a positive cosmological constant
play an essential role in bringing to an end variations in the scalar fields
driving time change in these 'constants' during any dust-dominated era of a
universe's expansion. In spatially flat universes with the fine
structure constant grows to a value which makes the existence of atoms
impossible.Comment: 7 pages, 5 figures, Corrected sign error and made necessary
modifications. This version is accepted for publication in Phys.Rev.
Cosmological Constraints on a Dynamical Electron Mass
Motivated by recent astrophysical observations of quasar absorption systems,
we formulate a simple theory where the electron to proton mass ratio is allowed to vary in space-time. In such a minimal theory only
the electron mass varies, with and kept constant. We find
that changes in will be driven by the electronic energy density after
the electron mass threshold is crossed. Particle production in this scenario is
negligible. The cosmological constraints imposed by recent astronomical
observations are very weak, due to the low mass density in electrons. Unlike in
similar theories for spacetime variation of the fine structure constant, the
observational constraints on variations in imposed by the weak
equivalence principle are much more stringent constraints than those from
quasar spectra. Any time-variation in the electron-proton mass ratio must be
less than one part in since redshifts This is more than
one thousand times smaller than current spectroscopic sensitivities can
achieve. Astronomically observable variations in the electron-proton must
therefore arise directly from effects induced by varying fine structure
'constant' or by processes associated with internal proton structure. We also
place a new upper bound of on any large-scale spatial
variation of that is compatible with the isotropy of the microwave
background radiation.Comment: New bounds from weak equivalence principle experiments added,
conclusions modifie
The Stability of an Isotropic Cosmological Singularity in Higher-Order Gravity
We study the stability of the isotropic vacuum Friedmann universe in gravity
theories with higher-order curvature terms of the form
added to the Einstein-Hilbert Lagrangian of general relativity on approach to
an initial cosmological singularity. Earlier, we had shown that, when ,
a special isotropic vacuum solution exists which behaves like the
radiation-dominated Friedmann universe and is stable to anisotropic and small
inhomogeneous perturbations of scalar, vector and tensor type. This is
completely different to the situation that holds in general relativity, where
an isotropic initial cosmological singularity is unstable in vacuum and under a
wide range of non-vacuum conditions. We show that when , although a
special isotropic vacuum solution found by Clifton and Barrow always exists, it
is no longer stable when the initial singularity is approached. We find the
particular stability conditions under the influence of tensor, vector, and
scalar perturbations for general for both solution branches. On approach to
the initial singularity, the isotropic vacuum solution with scale factor
is found to be stable to tensor perturbations for and stable to vector perturbations for , but is
unstable as otherwise. The solution with scale factor
is not relevant to the case of an initial singularity for
and is unstable as for all for each type of perturbation.Comment: 25 page
Populating the Landscape: A Top Down Approach
We put forward a framework for cosmology that combines the string landscape
with no boundary initial conditions. In this framework, amplitudes for
alternative histories for the universe are calculated with final boundary
conditions only. This leads to a top down approach to cosmology, in which the
histories of the universe depend on the precise question asked. We study the
observational consequences of no boundary initial conditions on the landscape,
and outline a scheme to test the theory. This is illustrated in a simple model
landscape that admits several alternative inflationary histories for the
universe. Only a few of the possible vacua in the landscape will be populated.
We also discuss in what respect the top down approach differs from other
approaches to cosmology in the string landscape, like eternal inflation.Comment: 22 pages, 1 figur
Variations of Alpha in Space and Time
We study inhomogeneous cosmological variations in the fine structure
'constant', in Friedmann universes. Inhomogeneous motions of the
scalar field driving changes in display spatial oscillations that
decrease in amplitude with increasing time. The inhomogeneous evolution quickly
approaches that found for exact Friedmann universes. We prove a theorem to show
that oscillations of in time (or redshift) cannot occur in Friedmann
universes in the BSBM theories considered here.Comment: 7 pages, no figures. Final version: improved discussion and addition
of new theorem excluding time oscillation
Spherical Curvature Inhomogeneities in String Cosmology
We study the evolution of non-linear spherically symmetric inhomogeneities in
string cosmology. Friedmann solutions of different spatial curvature are
matched to produce solutions which describe the evolution of non-linear density
and curvature inhomogeneities. The evolution of bound and unbound
inhomogeneities are studied. The problem of primordial black hole formation is
discussed in the string cosmological context and the pattern of evolution is
determined in the pre- and post-big-bang phases of evolution.Comment: 19 pages, Latex, 4 figure
- …
