1,774 research outputs found
A Rare Case of Post Septic Temporomandibular Joint Ankylosis
Temporomandibular joint ankylosis involves fusion of the mandibular condyle to the base of the skull. It is a major clinical problem that affects many patients suffering from facial trauma, infection or systemic disease. The treatment of Temporomandibular joint ankylosis poses a significant challenge because of technical difficulties and a high incidence of recurrence. This report describe a rare case of a 16 year-man with complete inability to open his mouth, diagnosed with unilateral post septic left bony Temporomandibular joint ankylosis. The surgical approach consisted of gap arthroplasty followed by vigorous physiotherapy
Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions
A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system
First-principle density-functional calculation of the Raman spectra of BEDT-TTF
We present a first-principles density-functional calculation for the Raman
spectra of a neutral BEDT-TTF molecule. Our results are in excellent agreement
with experimental results. We show that a planar structure is not a stable
state of a neutral BEDT-TTF molecule. We consider three possible conformations
and discuss their relation to disorder in these systems.Comment: 3 pages, 2 figures, submitted to the proceedings of ISCOM 200
Static dielectric response of icosahedral fullerenes from C60 to C2160 by an all electron density functional theory
The static dielectric response of C60, C180, C240, C540, C720, C960, C1500,
and C2160 fullerenes is characterized by an all-electron density-functional
method. First, the screened polarizabilities of C60, C180, C240, and C540, are
determined by the finite-field method using Gaussian basis set containing 35
basis functions per atom. In the second set of calculations, the unscreened
polarizabilities are calculated for fullerenes C60 through C2160 from the
self-consistent Kohn-Sham orbitals and eigen-values using the sum-over-states
method. The approximate screened polarizabilities, obtained by applying a
correction determined within linear response theory show excellent agreement
with the finite-field polarizabilities. The static dipole polarizability per
atom in C2160 is (4 Angstrom^3) three times larger than that in C60 (1.344
Angstrom^3). Our results reduce the uncertainty in various theoretical models
used previously to describe the dielectric response of fullerenes and show that
quantum size effects in polarizability are significantly smaller than
previously thought.Comment: RevTex, 3 figure
Thermal instability of an expanding dusty plasma with equilibrium cooling
We present an analysis of radiation induced instabilities in an expanding
plasma with considerable presence of dust particles and equilibrium cooling. We
have shown that the equilibrium expansion and cooling destabilize the radiation
condensation modes and the presence of dust particles enhances this effect. We
have examined our results in the context of ionized, dusty-plasma environments
such as those found in planetary nebulae (PNe). We show that due to the
non-static equilibrium and finite equilibrium cooling, small-scale localized
structures formed out of thermal instability, become transient, which agrees
with the observational results. The dust-charge fluctuation is found to heavily
suppress these instabilities, though in view of non-availability of convincing
experimental data, a definitive conclusion could not be made.Comment: 23 pages, 14 figure
Translation Representations and Scattering By Two Intervals
Studying unitary one-parameter groups in Hilbert space (U(t),H), we show that
a model for obstacle scattering can be built, up to unitary equivalence, with
the use of translation representations for L2-functions in the complement of
two finite and disjoint intervals.
The model encompasses a family of systems (U (t), H). For each, we obtain a
detailed spectral representation, and we compute the scattering operator, and
scattering matrix. We illustrate our results in the Lax-Phillips model where (U
(t), H) represents an acoustic wave equation in an exterior domain; and in
quantum tunneling for dynamics of quantum states
- …
