60 research outputs found

    Study of the potential employment of Malvaceae Species in composites materials

    Get PDF
    The employ of vegetal fibers for textiles and composites represents a great potential in economic and social sustainable development. Some Malvaceae species are considered tropical cosmopolitans, such as from Sida genus. Several species of this genus provide excellent textile bast fibers, which are very similar in qualities to the jute textile fiber. The objective of the present study is present the physicochemical characterization of six Brazilian vegetal fibers: Sida rhombifolia L.; Sida carpinifolia L. f.; Sidastrum paniculatum (L.) Fryxell; Sida cordifolia L.; Malvastrum coromandelianum (L.) Gurck; Wissadula subpeltata (Kuntze) R.E.Fries. Respectively the two first species are from Brazilian Atlantic Forest biome and the four remaining from Brazilian Cerrado biome, despite of present in other regions of the planet. The stems of these species were retted in water at 37oC for 20 days. The fibers were tested in order to determine tensile rupture strength, tenacity, elongation, Young’s modulus, cross microscopic structure, Scanning Electronic Microscopy (SEM), regain, combustion, acid, alkali, organic solvent and cellulase effects, pH of the aqueous extract, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The obtained values were compared with those from fibers of recognized applicability in the textile industry including hemp. The results are promising in terms of their employment in thermoset and thermoplastic medium resistance composites.FAPESP (“Fundação de Amparo à Pesquisa do Estado de São Paulo”), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (“Conselho Nacional de Desenvolvimento Científico e Tecnológico”) are gratefully acknowledged. The authors would also like to thank Mr. Ervin Sriubas Jr. and Kellinton José Mendonça Francisco for their technical support

    Unsupervised Ensembles Techniques for Visualization

    Get PDF
    In this paper we introduce two unsupervised techniques for visualization purposes based on the use of ensemble methods. The unsupervised techniques which are often quite sensitive to the presence of outliers are combined with the ensemble approaches in order to overcome the influence of outliers. The first technique is based on the use of Principal Component Analysis and the second one is known for its topology preserving characteristics and is based on the combination of the Scale Invariant Map and Maximum Likelihood Hebbian learning. In order to show the advantage of these novel ensemble-based techniques the results of some experiments carried out on artificial and real data sets are included

    Automated Ham Quality Classification Using Ensemble Unsupervised Mapping Models

    Get PDF
    This multidisciplinary study focuses on the application and comparison of several topology preserving mapping models upgraded with some classifier ensemble and boosting techniques in order to improve those visualization capabilities. The aim is to test their suitability for classification purposes in the field of food industry and more in particular in the case of dry cured ham. The data is obtained from an electronic device able to emulate a sensory olfative taste of ham samples. Then the data is classified using the previously mentioned techniques in order to detect which batches have an anomalous smelt (acidity, rancidity and different type of taints) in an automated way

    Genetic Algorithms to Simplify Prognosis of Endocarditis

    Get PDF
    This ongoing interdisciplinary research is based on the application of genetic algorithms to simplify the process of predicting the mortality of a critical illness called endocarditis. The goal is to determine the most relevant features (symptoms) of patients (samples) observed by doctors to predict the possible mortality once the patient is in treatment of bacterial endocarditis. This can help doctors to prognose the illness in early stages; by helping them to identify in advance possible solutions in order to aid the patient recover faster. The results obtained using a real data set, show that using only the features selected by employing a genetic algorithm from each patient’s case can predict with a quite high accuracy the most probable evolution of the patient

    Proposing to use artificial neural Networks for NoSQL attack detection

    Get PDF
    [EN] Relationships databases have enjoyed a certain boom in software worlds until now. These days, with the rise of modern applications, unstructured data production, traditional databases do not completely meet the needs of all systems. Regarding these issues, NOSQL databases have been developed and are a good alternative. But security aspects stay behind. Injection attacks are the most serious class of web attacks that are not taken seriously in NoSQL. This paper presents a Neural Network model approach for NoSQL injection. This method attempts to use the best and most effective features to identify an injection. The features used are divided into two categories, the first one based on the content of the request, and the second one independent of the request meta parameters. In order to detect attack payloads features, we work on character level analysis to obtain malicious rate of user inputs. The results demonstrate that our model has detected more attack payloads compare with models that work black list approach in keyword level

    Making things public: Archaeologies of the Spanish Civil War

    Get PDF
    Public Archaeology 6(4), 2007, 203-226The archaeology of recent traumatic events, such as genocides, mass political killings and armed conflict, is inevitably controversial. This is also the case of the Spanish Civil War (1936-1939), where the incipient archaeology of the confrontation is marked by bitter debates: Should this conflicting past be remembered or forgotten? Which version of the past is it going to be remembered? What are the best politics of memory for a healthy democracy? The archaeologies of the war face manifold problems: the lack of interest in academia, which fosters amateurism; the great divide between public and scientific practice; the narrow perspectives of some undertakings; the lack of coordination among practitioners, and the threats to the material remains of the war. An integrated archaeology of the conflict, which helps to make things public, is defended here.Peer reviewe

    Fusion of Topology Preserving Neural Networks

    No full text
    corecore