1,719 research outputs found
Multiqubit symmetric states with high geometric entanglement
We propose a detailed study of the geometric entanglement properties of pure
symmetric N-qubit states, focusing more particularly on the identification of
symmetric states with a high geometric entanglement and how their entanglement
behaves asymptotically for large N. We show that much higher geometric
entanglement with improved asymptotical behavior can be obtained in comparison
with the highly entangled balanced Dicke states studied previously. We also
derive an upper bound for the geometric measure of entanglement of symmetric
states. The connection with the quantumness of a state is discussed
Isotopic distribution of fission fragments in collisions between 238U beam and 9Be and 12C targets at 24 MeV/u
Inverse kinematics coupled to a high-resolution spectrometer is used to
investigate the isotopic yields of fission fragments produced in reactions
between a 238U beam at 24 MeV/u and 9Be and 12C targets. Mass, atomic number
and isotopic distributions are reported for the two reactions. These
informations give access to the neutron excess and the isotopic distribution
widths, which together with the atomic-number and mass distributions are used
to investigate the fusion-fission dynamics.Comment: Submitted to PR
Deterministic models of quantum fields
Deterministic dynamical models are discussed which can be described in
quantum mechanical terms. -- In particular, a local quantum field theory is
presented which is a supersymmetric classical model. The Hilbert space approach
of Koopman and von Neumann is used to study the classical evolution of an
ensemble of such systems. Its Liouville operator is decomposed into two
contributions, with positive and negative spectrum, respectively. The unstable
negative part is eliminated by a constraint on physical states, which is
invariant under the Hamiltonian flow. Thus, choosing suitable variables, the
classical Liouville equation becomes a functional Schroedinger equation of a
genuine quantum field theory. -- We briefly mention an U(1) gauge theory with
``varying alpha'' or dilaton coupling where a corresponding quantized theory
emerges in the phase space approach. It is energy-parity symmetric and,
therefore, a prototype of a model in which the cosmological constant is
protected by a symmetry.Comment: 6 pages; synopsis of hep-th/0510267, hep-th/0503069, hep-th/0411176 .
Talk at Constrained Dynamics and Quantum Gravity - QG05, Cala Gonone
(Sardinia, Italy), September 12-16, 2005. To appear in the proceeding
Prolate-Spherical Shape Coexistence at N=28 in S
The structure of S has been studied using delayed and
electron spectroscopy at \textsc{ganil}. The decay rates of the 0
isomeric state to the 2 and 0 states have been measured for the
first time, leading to a reduced transition probability
B(E2~:~20= 8.4(26)~efm and a monopole
strength (E0~:~00
=~8.7(7)10. Comparisons to shell model calculations point
towards prolate-spherical shape coexistence and a phenomenological two level
mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Collapse of the N=28 shell closure in Si
The energies of the excited states in very neutron-rich Si and
P have been measured using in-beam -ray spectroscopy from the
fragmentation of secondary beams of S at 39 A.MeV. The low 2
energy of Si, 770(19) keV, together with the level schemes of
P provide evidence for the disappearance of the Z=14 and N=28
spherical shell closures, which is ascribed mainly to the action of
proton-neutron tensor forces. New shell model calculations indicate that
Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let
Early onset of ground-state deformation in the neutron-deficient polonium isotopes
In-source resonant ionization laser spectroscopy of the even- polonium
isotopes Po has been performed using the
to ( nm) transition in the polonium atom
(Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope
shifts in Po with a previous data set allows to test for the first
time recent large-scale atomic calculations that are essential to extract the
changes in the mean-square charge radius of the atomic nucleus. When going to
lighter masses, a surprisingly large and early departure from sphericity is
observed, which is only partly reproduced by Beyond Mean Field calculations.Comment: As submitted to PR
Cognitive reserve in granulin-related frontotemporal dementia: from preclinical to clinical stages
OBJECTIVE
Consistent with the cognitive reserve hypothesis, higher education and occupation attainments may help persons with neurodegenerative dementias to better withstand neuropathology before developing cognitive impairment. We tested here the cognitive reserve hypothesis in patients with frontotemporal dementia (FTD), with or without pathogenetic granulin mutations (GRN+ and GRN-), and in presymptomatic GRN mutation carriers (aGRN+).
METHODS
Education and occupation attainments were assessed and combined to define Reserve Index (RI) in 32 FTD patients, i.e. 12 GRN+ and 20 GRN-, and in 17 aGRN+. Changes in functional connectivity were estimated by resting state fMRI, focusing on the salience network (SN), executive network (EN) and bilateral frontoparietal networks (FPNs). Cognitive status was measured by FTD-modified Clinical Dementia Rating Scale.
RESULTS
In FTD patients higher level of premorbid cognitive reserve was associated with reduced connectivity within the SN and the EN. EN was more involved in FTD patients without GRN mutations, while SN was more affected in GRN pathology. In aGRN+, cognitive reserve was associated with reduced SN.
CONCLUSIONS
This study suggests that cognitive reserve modulates functional connectivity in patients with FTD, even in monogenic disease. In GRN inherited FTD, cognitive reserve mechanisms operate even in presymptomatic to clinical stages
- …
