1,676 research outputs found
Wind-accretion disks in wide binaries, second generation protoplanetary disks and accretion onto white dwarfs
Mass transfer from an evolved donor star to its binary companion is a
standard feature of stellar evolution in binaries. In wide binaries, the
companion star captures some of the mass ejected in a wind by the primary star.
The captured material forms an accretion disk. Here, we study the evolution of
wind-accretion disks, using a numerical approach which allows us to follow the
long term evolution. For a broad range of initial conditions, we derive the
radial density and temperature profiles of the disk. In most cases,
wind-accretion leads to long-lived stable disks over the lifetime of the AGB
donor star. The disks have masses of a few times 10^{-5}-10^{-3} M_sun, with
surface density and temperature profiles that follow broken power-laws. The
total mass in the disk scales approximately linearly with the viscosity
parameter used. Roughly 50% to 80% of the mass falling into the disk accretes
onto the central star; the rest flows out through the outer edge of the disk
into the stellar wind of the primary. For systems with large accretion rates,
the secondary accretes as much as 0.1 M_sun. When the secondary is a white
dwarf, accretion naturally leads to nova and supernova eruptions. For all types
of secondary star, the surface density and temperature profiles of massive
disks resemble structures observed in protoplanetary disks, suggesting that
coordinated observational programs might improve our understanding of uncertain
disk physics.Comment: ApJ, in press. Some discussion on thermal instabilities, and
different viscosities adde
Dipyridamole plus aspirin versus aspirin alone in the secondary prevention after TIA or stroke: a meta-analysis by risk
Objectives: Our aim was to study the effect of combination therapy with aspirin and dipyridamole (A+D) over aspirin alone (ASA) in secondary prevention after transient
ischemic attack or minor stroke of presumed arterial origin and to perform subgroup analyses to identify patients that might benefit most from secondary prevention with A+D.
Data sources: The previously published meta-analysis of individual patient data was updated with data from ESPRIT (N=2,739); trials without data on the comparison of A+D versus ASA were excluded.
Review methods: A meta-analysis was performed using Cox regression, including several subgroup analyses and following baseline risk stratification.
Results: A total of 7,612 patients (5 trials) were included in the analyses, 3,800 allocated to A+D and 3,812 to ASA alone. The trial-adjusted hazard ratio for the composite event of vascular death, non-fatal myocardial infarction and non-fatal stroke was 0.82 (95% confidence interval 0.72-0.92). Hazard ratios did not differ in subgroup analyses based on age, sex, qualifying event, hypertension, diabetes, previous stroke, ischemic heart disease,
aspirin dose, type of vessel disease and dipyridamole formulation, nor across baseline risk strata as assessed with two different risk scores. A+D were also more effective than ASA alone in preventing recurrent stroke, HR 0.78 (95% CI 0.68 – 0.90).
Conclusion: The combination of aspirin and dipyridamole is more effective than aspirin alone in patients with TIA or ischemic stroke of presumed arterial origin in the secondary
prevention of stroke and other vascular events. This superiority was found in all subgroups and was independent of baseline risk. ---------------------------7dc3521430776
Content-Disposition: form-data; name="c14_creators_1_name_family"
Halke
Synthesis and structural characterization of a mimetic membrane-anchored prion protein
During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP
The Kepler Light Curve of V344 Lyrae: Constraining the Thermal-Viscous Limit Cycle Instability
We present time dependent modeling based on the accretion disk limit cycle
model for a 270 d light curve of the short period SU UMa-type dwarf nova V344
Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far
surpass that generally available for long term light curves. The data encompass
two superoutbursts and 17 normal (i.e., short) outbursts. The main decay of the
superoutbursts is nearly perfectly exponential, decaying at a rate ~12 d/mag,
while the much more rapid decays of the normal outbursts exhibit a
faster-than-exponential shape. Our modeling using the basic accretion disk
limit cycle can produce the main features of the V344 Lyr light curve,
including the peak outburst brightness. Nevertheless there are obvious
deficiencies in our model light curves: (1) The rise times we calculate, both
for the normal and superoutbursts, are too fast. (2) The superoutbursts are too
short. (3) The shoulders on the rise to superoutburst have more structure than
the shoulder in the observed superoutburst and are too slow, comprising about a
third to half of the total viscous plateau, rather than the ~10% observed.
However, one of the alpha_{cold} -> alpha_{hot} interpolation schemes we
investigate (one that is physically motivated) does yield longer superoutbursts
with suitably short, less structured shoulders.Comment: 39 pages, 9 figures, accepted in the Astrophysical Journa
Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change
The North Atlantic Oscillation (NAO) obtained using instrumental and
documentary proxy predictors from Eurasia is found to be characterized by a
quasi 60-year dominant oscillation since 1650. This pattern emerges clearly
once the NAO record is time integrated to stress its comparison with the
temperature record. The integrated NAO (INAO) is found to well correlate with
the length of the day (since 1650) and the global surface sea temperature
record HadSST2 and HadSST3 (since 1850). These findings suggest that INAO can
be used as a good proxy for global climate change, and that a 60-year cycle
exists in the global climate since at least 1700. Finally, the INAO ~60-year
oscillation well correlates with the ~60- year oscillations found in the
historical European aurora record since 1700, which suggests that this 60-year
dominant climatic cycle has a solar-astronomical origin
Evaluating the effectiveness of agricultural adaptation to climate change in preindustrial society
The effectiveness of agricultural adaptation determines the vulnerability of this sector to climate change, particularly during the preindustrial era. However, this effectiveness has rarely been quantitatively evaluated, specifically at a large spatial and long-term scale. The present study covers this case of preindustrial society in AD 1500–1800. Given the absence of technological innovations in this time frame, agricultural production was chiefly augmented by cultivating more land (land input) and increasing labor input per land unit (labor input). Accordingly, these two methods are quantitatively examined. Statistical results show that within the study scale, land input is a more effective approach of mitigating climatic impact than labor input. Nonetheless, these observations collectively improve Boserup's theory from the perspective of a large spatial and long-term scale.postprin
Limits from the Hubble Space Telescope on a Point Source in SN 1987A
We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging
Spectrograph (STIS) on the Hubble Space Telescope (HST) in 1999 September, and
again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
No point source is observed in the remnant. We obtain a limiting flux of F_opt
< 1.6 x 10^{-14} ergs/s/cm^2 in the wavelength range 2900-9650 Angstroms for
any continuum emitter at the center of the supernova remnant (SNR). It is
likely that the SNR contains opaque dust that absorbs UV and optical emission,
resulting in an attenuation of ~35% due to dust absorption in the SNR. Taking
into account dust absorption in the remnant, we find a limit of L_opt < 8 x
10^{33} ergs/s. We compare this upper bound with empirical evidence from point
sources in other supernova remnants, and with theoretical models for possible
compact sources. Bright young pulsars such as Kes 75 or the Crab pulsar are
excluded by optical and X-ray limits on SN 1987A. Of the young pulsars known to
be associated with SNRs, those with ages < 5000 years are all too bright in
X-rays to be compatible with the limits on SN 1987A. Examining theoretical
models for accretion onto a compact object, we find that spherical accretion
onto a neutron star is firmly ruled out, and that spherical accretion onto a
black hole is possible only if there is a larger amount of dust absorption in
the remnant than predicted. In the case of thin-disk accretion, our flux limit
requires a small disk, no larger than 10^{10} cm, with an accretion rate no
more than 0.3 times the Eddington accretion rate. Possible ways to hide a
surviving compact object include the removal of all surrounding material at
early times by a photon-driven wind, a small accretion disk, or very high
levels of dust absorption in the remnant.Comment: 40 pages, 5 figures. AAStex. Accepted, ApJ 04/28/200
Large-scale periodicity in the distribution of QSO absorption-line systems
The spatial-temporal distribution of absorption-line systems (ALSs) observed
in QSO spectra within the cosmological redshift interval z = 0.0--4.3 is
investigated on the base of our updated catalog of absorption systems. We
consider so called metallic systems including basically lines of heavy
elements. The sample of the data displays regular variations (with amplitudes ~
15 -- 20%) in the z-distribution of ALSs as well as in the eta-distribution,
where eta is a dimensionless line-of-sight comoving distance, relatively to
smoother dependences. The eta-distribution reveals the periodicity with period
Delta eta = 0.036 +/- 0.002, which corresponds to a spatial characteristic
scale (108 +/- 6) h(-1) Mpc or (alternatively) a temporal interval (350 +/- 20)
h(-1) Myr for the LambdaCDM cosmological model. We discuss a possibility of a
spatial interpretation of the results treating the pattern obtained as a trace
of an order imprinted on the galaxy clustering in the early Universe.Comment: AASTeX, 13 pages, with 9 figures, Accepted for publication in
Astrophysics & Space Scienc
The structure of Chariklo's rings from stellar occultations
Two narrow and dense rings (called C1R and C2R) were discovered around the
Centaur object (10199) Chariklo during a stellar occultation observed on 2013
June 3. Following this discovery, we planned observations of several
occultations by Chariklo's system in order to better characterize the physical
properties of the ring and main body. Here, we use 12 successful occulations by
Chariklo observed between 2014 and 2016. They provide ring profiles (physical
width, opacity, edge structure) and constraints on the radii and pole position.
Our new observations are currently consistent with the circular ring solution
and pole position, to within the km formal uncertainty for the ring
radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal
significant width variations from to 7.5 km. The width of the fainter
ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and
outer edges of C1R are consistent with infinitely sharp boundaries, with
typical upper limits of one kilometer for the transition zone between the ring
and empty space. No constraint on the sharpness of C2R's edges is available. A
1 upper limit of m is derived for the equivalent width of
narrow (physical width <4 km) rings up to distances of 12,000 km, counted in
the ring plane
- …
