437 research outputs found
Frictional dissipation of polymeric solids vs interfacial glass transition
We present single contact friction experiments between a glassy polymer and
smooth silica substrates grafted with alkylsilane layers of different coverage
densities and morphologies. This allows us to adjust the polymer/substrate
interaction strength. We find that, when going from weak to strong interaction,
the response of the interfacial junction where shear localizes evolves from
that of a highly viscous threshold fluid to that of a plastically deformed
glassy solid. This we analyse as resulting from an interaction-induced
``interfacial glass transition'' helped by pressure
Cruise Report Jan Mayen vent fields (JMVF) ; R/V G.O. Sars, Expedition No. 2011108/CGB2011, 10. – 22. June 2011, Bergen – Bergen, Norway
Cruise Report Jan Mayen vent fields (JMVF) ; R/V G.O. Sars, Expedition No. 2012109/CGB2012B, 23. July – 04. August 2012, Bergen, Norway – Akureyri, Iceland
Anomalous acoustic reflection on a sliding interface or a shear band
We study the reflection of an acoustic plane wave from a steadily sliding
planar interface with velocity strengthening friction or a shear band in a
confined granular medium. The corresponding acoustic impedance is utterly
different from that of the static interface. In particular, the system being
open, the energy of an in-plane polarized wave is no longer conserved, the work
of the external pulling force being partitioned between frictional dissipation
and gain (of either sign) of coherent acoustic energy. Large values of the
friction coefficient favor energy gain, while velocity strengthening tends to
suppress it. An interface with infinite elastic contrast (one rigid medium) and
V-independent (Coulomb) friction exhibits spontaneous acoustic emission, as
already shown by M. Nosonovsky and G.G. Adams (Int. J. Ing. Sci., {\bf 39},
1257 (2001)). But this pathology is cured by any finite elastic contrast, or by
a moderately large V-strengthening of friction.
We show that (i) positive gain should be observable for rough-on-flat
multicontact interfaces (ii) a sliding shear band in a granular medium should
give rise to sizeable reflection, which opens a promising possibility for the
detection of shear localization.Comment: 13 pages, 10 figure
Rubber friction on smooth surfaces
We study the sliding friction for viscoelastic solids, e.g., rubber, on hard
flat substrate surfaces. We consider first the fluctuating shear stress inside
a viscoelastic solid which results from the thermal motion of the atoms or
molecules in the solid. At the nanoscale the thermal fluctuations are very
strong and give rise to stress fluctuations in the MPa-range, which is similar
to the depinning stresses which typically occur at solid-rubber interfaces,
indicating the crucial importance of thermal fluctuations for rubber friction
on smooth surfaces. We develop a detailed model which takes into account the
influence of thermal fluctuations on the depinning of small contact patches
(stress domains) at the rubber-substrate interface. The theory predicts that
the velocity dependence of the macroscopic shear stress has a bell-shaped f
orm, and that the low-velocity side exhibits the same temperature dependence as
the bulk viscoelastic modulus, in qualitative agreement with experimental data.
Finally, we discuss the influence of small-amplitude substrate roughness on
rubber sliding friction.Comment: 14 pages, 16 figure
The motivation to learn as a self-presentation tool among Swiss high school students : The moderating role of mastery goals' perceived social value on learning
Although it has been assumed that the motivation to learn - or mastery goal endorsement - positively predicts learning achievement, most empirical findings fail to demonstrate this relationship. In the present research, conducted in a Swiss high school, we adopted a social value approach to test the hypothesis that adolescent students' mastery goals do in fact predict learning, but only if these goals are perceived as highly useful for scholarly success (high social utility), and are not endorsed as a means to be appreciated by the teachers (low social desirability), a finding that has previously been observed among college students and on teacher-graded achievement measures only. Results demonstrate that in spite of potential peculiarities of an adolescent population, individual differences in mastery goals' perceived social utility and desirability moderate the mastery goal endorsement-learning achievement relation. Findings are discussed with regard to both theory development and educational practice
Friction Laws for Elastic Nano-Scale Contacts
The effect of surface curvature on the law relating frictional forces F with
normal load L is investigated by molecular dynamics simulations as a function
of surface symmetry, adhesion, and contamination. Curved, non-adhering, dry,
commensurate surfaces show a linear dependency, F proportional to L, similar to
dry flat commensurate or amorphous surfaces and macroscopic surfaces. In
contrast, curved, non-adhering, dry, amorphous surfaces show F proportional to
L^(2/3) similar to friction force microscopes. In our model, adhesive effects
are most adequately described by the Hertz plus offset model, as the
simulations are confined to small contact radii. Curved lubricated or
contaminated surfaces show again different behavior; details depend on how much
of the contaminant gets squeezed out of the contact. Also, it is seen that the
friction force in the lubricated case is mainly due to atoms at the entrance of
the tip.Comment: 7 pages, 5 figures, submitted to Europhys. Let
Technical synthesis report on droplet/bubble dynamics, plume dynamics and modelling parameters, use of hydro-acoustics to quantify droplet/bubble fluxes, and carbonate system variable assessment
Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge
Microbial communities and their associated metabolic activity in
marine sediments have a profound impact on global biogeochemical
cycles. Their composition and structure are attributed to geochemical
and physical factors, but finding direct correlations has remained a
challenge. Here we show a significant statistical relationship between
variation in geochemical composition and prokaryotic community
structure within deep-sea sediments. We obtained comprehensive
geochemical data from two gravity cores near the hydrothermal
vent field Loki’s Castle at the Arctic Mid-Ocean Ridge, in the Norwegian-
Greenland Sea. Geochemical properties in the rift valley
sediments exhibited strong centimeter-scale stratigraphic variability.
Microbial populations were profiled by pyrosequencing from
15 sediment horizons (59,364 16S rRNA gene tags), quantitatively
assessed by qPCR, and phylogenetically analyzed. Although the
same taxa were generally present in all samples, their relative
abundances varied substantially among horizons and fluctuated
between Bacteria- and Archaea-dominated communities. By independently
summarizing covariance structures of the relative
abundance data and geochemical data, using principal components
analysis, we found a significant correlation between changes in
geochemical composition and changes in community structure.
Differences in organic carbon and mineralogy shaped the relative
abundance of microbial taxa. We used correlations to build hypotheses
about energy metabolisms, particularly of the Deep Sea Archaeal
Group, specific Deltaproteobacteria, and sediment lineages
of potentially anaerobic Marine Group I Archaea. We demonstrate
that total prokaryotic community structure can be directly correlated
to geochemistry within these sediments, thus enhancing our
understanding of biogeochemical cycling and our ability to predict
metabolisms of uncultured microbes in deep-sea sediments
Time-Resolved Studies of Stick-Slip Friction in Sheared Granular Layers
Sensitive and fast force measurements are performed on sheared granular
layers undergoing stick-slip motion, along with simultaneous imaging. A full
study has been done for spherical particles with a +-20% size distribution.
Stick-slip motion due to repetitive fluidization of the layer occurs for low
driving velocities. Between major slip events, slight creep occurs that is
variable from one event to the next. The effects of changing the stiffness k
and velocity V of the driving system are studied in detail. The stick-slip
motion is almost periodic for spherical particles over a wide range of
parameters, but becomes irregular when k is large and V is relatively small. At
larger V, the motion becomes smoother and is affected by the inertia of the
upper plate bounding the layer. Measurements of the period T and amplitude A of
the relative motion are presented as a function of V. At a critical value Vc, a
transition to continuous sliding motion occurs that is discontinuous for k not
too large. The time dependence of the instantaneous velocity of the upper plate
and the frictional force produced by the granular layer are determined within
individual slipping events. The force is a multi-valued function of the
instantaneous velocity, with pronounced hysteresis and a sudden drop prior to
resticking. Measurements of vertical displacement reveal a small dilation of
the material (about one tenth of the mean particle size in a layer 20 particles
deep) associated with each slip event. Finally, optical imaging reveals that
localized microscopic rearrangements precede (and follow) each slip event. The
behavior of smooth particles is contrasted with that of rough particles.Comment: 20, pages, 17 figures, to appear in Phys. Rev.
- …
