452 research outputs found
Isolation and expression in transgenic tobacco and rice plants of the cassava vein mosaic virus (CVMV) promoter
The cassava vein mosaic virus (CVMV) is a double stranded DNA virus which infects cassava plants (#Manihot esculenta$ Crantz) and has been characterized as a plant pararetrovirus belonging to the caulimovirus subgroup. Two DNA fragments, CVP1 of 388 nucleotides from position -386 to +20 and CVP2 of 511 nucleotides from position -443 to +72, were isolated from the viral genome and fused to the uidA reporter gene to test promoter expression. The transcription start site of the viral promoter was determined using RNA isolated from transgenic plants containing the CVMV promoter:uidA fusion gene. Both promoter fragments were able to cause high levels of gene expression in protoplasts isolated from cassava and tobacco cell suspensions. The expression pattern of the CVMV promoters was analyzed in transgenic tobacco and rice plants, and revealed that the GUS staining pattern was similar for each construct and in both plants. The two promoter fragments were active in all plant organs tested and in a variety of cell types, suggesting a near constitutive pattern of expression. In both tobacco and rice plants, GUS activity was highest in vascular elements, in leaf mesophyll cells, and in root tips. (Résumé d'auteur
Control of inflammation by stromal Hedgehog pathway activation restrains colitis
Inflammation disrupts tissue architecture and function, thereby contributing to the pathogenesis of diverse diseases; the signals that promote or restrict tissue inflammation thus represent potential targets for therapeutic intervention. Here, we report that genetic or pharmacologic Hedgehog pathway inhibition intensifies colon inflammation (colitis) in mice. Conversely, genetic augmentation of Hedgehog response and systemic small-molecule Hedgehog pathway activation potently ameliorate colitis and restrain initiation and progression of colitis-induced adenocarcinoma. Within the colon, the Hedgehog protein signal does not act directly on the epithelium itself, but on underlying stromal cells to induce expression of IL-10, an immune-modulatory cytokine long known to suppress inflammatory intestinal damage. IL-10 function is required for the full protective effect of small-molecule Hedgehog pathway activation in colitis; this pharmacologic augmentation of Hedgehog pathway activity and stromal IL-10 expression are associated with increased presence of CD4(+) Foxp3(+) regulatory T cells. We thus identify stromal cells as cellular coordinators of colon inflammation and suggest their pharmacologic manipulation as a potential means to treat colitis.11138Ysciescopu
Rare coding SNP in DZIP1 gene associated with late-onset sporadic Parkinson's disease
We present the first application of the hypothesis-rich mathematical theory
to genome-wide association data. The Hamza et al. late-onset sporadic
Parkinson's disease genome-wide association study dataset was analyzed. We
found a rare, coding, non-synonymous SNP variant in the gene DZIP1 that confers
increased susceptibility to Parkinson's disease. The association of DZIP1 with
Parkinson's disease is consistent with a Parkinson's disease stem-cell ageing
theory.Comment: 14 page
Transcriptional response of Mexican axolotls to \u3ci\u3eAmbystoma tigrinum\u3c/i\u3e virus (ATV) infection
Background
Very little is known about the immunological responses of amphibians to pathogens that are causing global population declines. We used a custom microarray gene chip to characterize gene expression responses of axolotls (Ambystoma mexicanum) to an emerging viral pathogen, Ambystoma tigrinum virus (ATV).
Result
At 0, 24, 72, and 144 hours post-infection, spleen and lung samples were removed for estimation of host mRNA abundance and viral load. A total of 158 up-regulated and 105 down-regulated genes were identified across all time points using statistical and fold level criteria. The presumptive functions of these genes suggest a robust innate immune and antiviral gene expression response is initiated by A. mexicanum as early as 24 hours after ATV infection. At 24 hours, we observed transcript abundance changes for genes that are associated with phagocytosis and cytokine signaling, complement, and other general immune and defense responses. By 144 hours, we observed gene expression changes indicating host-mediated cell death, inflammation, and cytotoxicity.
Conclusion
Although A. mexicanum appears to mount a robust innate immune response, we did not observe gene expression changes indicative of lymphocyte proliferation in the spleen, which is associated with clearance of Frog 3 iridovirus in adult Xenopus. We speculate that ATV may be especially lethal to A. mexicanum and related tiger salamanders because they lack proliferative lymphocyte responses that are needed to clear highly virulent iridoviruses. Genes identified from this study provide important new resources to investigate ATV disease pathology and host-pathogen dynamics in natural populations
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
Profiling of Genes Related to Cross Protection and Competition for NbTOM1 by HLSV and TMV
10.1371/journal.pone.0073725PLoS ONE89-POLN
Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (\u3ci\u3eAmbystoma\u3c/i\u3e)
Background
Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances.
Results
Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by ≥ two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by ≥ two-fold in the 5 and 50 nM T4 treatments, respectively.
Conclusion
We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis
Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (Ambystoma)
<p>Abstract</p> <p>Background</p> <p>Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T<sub>4</sub>). We induced metamorphosis in juvenile Mexican axolotls (<it>Ambystoma mexicanum</it>) using 5 and 50 nM T<sub>4</sub>, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances.</p> <p>Results</p> <p>Individuals reared in the higher T<sub>4 </sub>concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T<sub>4 </sub>concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by ≥ two-fold between T<sub>4 </sub>treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by ≥ two-fold in the 5 and 50 nM T<sub>4 </sub>treatments, respectively.</p> <p>Conclusion</p> <p>We found that T<sub>4 </sub>concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T<sub>4</sub>. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis.</p
A Quality Improvement Project to Standardize Surfactant Delivery in the Era of Noninvasive Ventilation.
- …
