120 research outputs found

    Review of recent progress in nanoscratch testing

    Get PDF
    Nanoscratch testing, as an important technique for the assessment of the mechanical failure behaviour and adhesion strength of ceramic coatings and a simulation tool of single asperity contact in tribological experiments, is increasingly becoming an established nanomechanical characterisation method. This paper reviews recent work in nanoscratch testing in different engineering applications including thin ceramic films, automotive organic coatings, chemical- mechanical polishing and biomaterials. In the main part of the paper, nanoscratch results from experiments performed using NanoTest systems fitted with tangential force sensors and spherical indenters as scratch probes are presented and discussed. The types of nanoscratch tests described include constant load nanoscratches, ramped load nanoscratch tests and multipass repetitive unidirectional constant load nanoscratch tests (nanowear). The results are discussed in terms of critical load sensitivity to intrinsic and extrinsic factors, impact of scan speed and loading rate, influence of probe radius and geometry, estimation of tip contact pressure, influence of surface roughness and film stress and thickness, and finally role of ploughing on friction evolution

    Incipient plasticity in tungsten during nanoindentation: Dependence on surface roughness, probe radius and crystal orientation

    Get PDF
    The influence of crystallographic orientation, contact size and surface roughness effects on incipient plasticity in tungsten were investigated by nanoindentation with indenters with a range of end radius (150, 350, 720 and 2800 nm) in single crystal samples with the (100) and (111) orientations. Results for the single crystals were compared to those for a reference polycrystalline tungsten sample tested under the same conditions. Surface roughness measurements showed that the Ra surface roughness was around 2, 4, and 6 nm for the (100), (111) and polycrystalline samples respectively. A strong size effect was observed, with the stress for incipient plasticity increasing as the indenter radius decreased. The maximum shear stress approached the theoretical shear strength when W(100) was indented using the tip with the smallest radius. The higher roughness and greater dislocation density on the W(111) and polycrystalline samples contributed to yield occurring at lower stresses

    Nanomechanical testing of thin films to 950 °C

    Get PDF
    Nanomechanical testing has been a revolutionary technique in improving our fundamental understanding of the basis of mechanical properties of thin film systems and the importance of the nanoscale behaviour on their performance. However, nanomechanical tests are usually performed in ambient laboratory conditions even if the coatings being developed are expected to perform at high temperature in use. It is important to measure nanomechanical and tribological properties of materials under test conditions that are closer to their operating conditions where the results are more relevant. We can then better understand the links between properties and performance and design advanced materials systems for increasingly demanding applications. However, high temperature nanomechanics is highly challenging experimentally and a high level of instrument thermal stability is critical for reliable results. To achieve this stability the NanoTest Vantage has been designed with (i) active heating of the sample and the indenter (ii) horizontal loading to avoid convection at the displacement sensor (iii) patented stage design and thermal control method. By separately and actively heating and controlling the temperatures of both the indenter and test sample there is minimal/no thermal drift during the high temperature indentation and measurements can be performed as reliably as at room temperature. Illustrative results are presented for TiAlN, TiFeN, DLC and MAX-phase coatings. Above 500 °C it is necessary to use Argon purging to limit oxidation of samples and the diamond indenter, although the efficiency of this decreases over 750 °C. To test at higher temperatures without indenter or sample oxidation an ultra-low drift high temperature vacuum nanomechanics system (NanoTest Xtreme) has been recently developed. Results with the vacuum system are presented up to 950 °C

    Ten steps or climbing a mountain: A study of Australian health professionals' perceptions of implementing the baby friendly health initiative to protect, promote and support breastfeeding

    Get PDF
    Background: The Baby Friendly Hospital (Health) Initiative (BFHI) is a global initiative aimed at protecting, promoting and supporting breastfeeding and is based on the ten steps to successful breastfeeding. Worldwide, over 20,000 health facilities have attained BFHI accreditation but only 77 Australian hospitals (approximately 23%) have received accreditation. Few studies have investigated the factors that facilitate or hinder implementation of BFHI but it is acknowledged this is a major undertaking requiring strategic planning and change management throughout an institution. This paper examines the perceptions of BFHI held by midwives and nurses working in one Area Health Service in NSW, Australia. Methods: The study used an interpretive, qualitative approach. A total of 132 health professionals, working across four maternity units, two neonatal intensive care units and related community services, participated in 10 focus groups. Data were analysed using thematic analysis. Results: Three main themes were identified: ‘Belief and Commitment’; ‘Interpreting BFHI’ and ‘Climbing a Mountain’. Participants considered the BFHI implementation a high priority; an essential set of practices that would have positive benefits for babies and mothers both locally and globally as well as for health professionals. It was considered achievable but would take commitment and hard work to overcome the numerous challenges including a number of organisational constraints. There were, however, differing interpretations of what was required to attain BFHI accreditation with the potential that misinterpretation could hinder implementation. A model described by Greenhalgh and colleagues on adoption of innovation is drawn on to interpret the findings. Conclusion: Despite strong support for BFHI, the principles of this global strategy are interpreted differently by health professionals and further education and accurate information is required. It may be that the current processes used to disseminate and implement BFHI need to be reviewed. The findings suggest that there is a contradiction between the broad philosophical stance and best practice approach of this global strategy and the tendency for health professionals to focus on the ten steps as a set of tasks or a checklist to be accomplished. The perceived procedural approach to implementation may be contributing to lower rates of breastfeeding continuation

    Education and training of healthcare staff in the knowledge, attitudes and skills needed to work effectively with breastfeeding women:a systematic review

    Get PDF
    BACKGROUND: Current evidence suggests that women need effective support to breastfeed, but many healthcare staff lack the necessary knowledge, attitudes and skills. There is therefore a need for breastfeeding education and training for healthcare staff. The primary aim of this review is to determine whether education and training programs for healthcare staff have an effect on their knowledge and attitudes about supporting breastfeeding women. The secondary aim of this review was to identify whether any differences in type of training or discipline of staff mattered. METHODS: A systematic search of the literature was conducted using the Cochrane Pregnancy and Childbirth Group’s trial register. Randomised controlled trials comparing breastfeeding education and training for healthcare staff with no or usual training and education were included if they measured the impact on staff knowledge, attitudes or compliance with the Baby Friendly Hospital Initiative (BFHI). RESULTS: From the 1192 reports identified, four distinct studies were included. Three studies were two-arm cluster-randomised trials and one was a two-arm individual randomised trial. Of these, three contributed quantitative data from a total of 250 participants. Due to heterogeneity of outcome measures meta-analysis was not possible. Knowledge was included as an outcome in two studies and demonstrated small but significant positive effects. Attitudes towards breastfeeding was included as an outcome in two studies, however, results were inconsistent both in terms of how they were measured and the intervention effects. One study reported a small but significant positive effect on BFHI compliance. Study quality was generally deemed low with the majority of domains being judged as high or unclear risk of bias. CONCLUSIONS: This review identified a lack of good evidence on breastfeeding education and training for healthcare staff. There is therefore a critical need for research to address breastfeeding education and training needs of multidisciplinary healthcare staff in different contexts through large, well-conducted RCTs

    Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development

    Get PDF
    The TiAlCrSiYN-based family of PVD (physical vapor deposition) hard coatings was specially designed for extreme conditions involving the dry ultra-performance machining of hardened tool steels. However, there is a strong potential for further advances in the wear performance of the coatings through improvements in their architecture. A few different coating architectures (monolayer, multilayer, bi-multilayer, bi-multilayer with increased number of alternating nano-layers) were studied in relation to cutting-tool life. Comprehensive characterization of the structure and properties of the coatings has been performed using XRD, SEM, TEM, micro-mechanical studies and tool-life evaluation. The wear performance was then related to the ability of the coating layer to exhibit minimal surface damage under operation, which is directly associated with the various micro-mechanical characteristics (such as hardness, elastic modulus and related characteristics; nano-impact; scratch test-based characteristics). The results presented exhibited that a substantial increase in tool life as well as improvement of the mechanical properties could be achieved through the architectural development of the coatings
    corecore