173 research outputs found
The TRENDS High-Contrast Imaging Survey. VI. Discovery of a Mass, Age, and Metallicity Benchmark Brown Dwarf
The mass and age of substellar objects are degenerate parameters leaving the
evolutionary state of brown dwarfs ambiguous without additional information.
Theoretical models are normally used to help distinguish between old, massive
brown dwarfs and young, low mass brown dwarfs but these models have yet to be
properly calibrated. We have carried out an infrared high-contrast imaging
program with the goal of detecting substellar objects as companions to nearby
stars to help break degeneracies in inferred physical properties such as mass,
age, and composition. Rather than using imaging observations alone, our targets
are pre-selected based on the existence of dynamical accelerations informed
from years of stellar radial velocity (RV) measurements. In this paper, we
present the discovery of a rare benchmark brown dwarf orbiting the nearby
( pc), solar-type (G9V) star HD 4747 ([Fe/H]=)
with a projected separation of only AU (
0.6"). Precise Doppler measurements taken over 18 years reveal the companion's
orbit and allow us to place strong constraints on its mass using dynamics (). Relative photometry (,
, ) indicates that HD 4747 B is
most-likely a late-type L-dwarf and, if near the L/T transition, an intriguing
source for studying cloud physics, variability, and polarization. We estimate a
model-dependent mass of for an age of
Gyr based on gyrochronology. Combining astrometric measurements with RV data,
we calculate the companion dynamical mass () and orbit
() directly. As a new mass, age, and metallicity benchmark, HD
4747 B will serve as a laboratory for precision astrophysics to test
theoretical models that describe the emergent radiation of brown dwarfs.Comment: Accepted to Ap
Friends of Hot Jupiters II: No Correspondence Between Hot-Jupiter Spin-Orbit Misalignment and the Incidence of Directly Imaged Stellar Companions
Multi-star systems are common, yet little is known about a stellar
companion's influence on the formation and evolution of planetary systems. For
instance, stellar companions may have facilitated the inward migration of hot
Jupiters towards to their present day positions. Many observed short period gas
giant planets also have orbits that are misaligned with respect to their star's
spin axis, which has also been attributed to the presence of a massive outer
companion on a non-coplanar orbit. We present the results of a multi-band
direct imaging survey using Keck NIRC2 to measure the fraction of short period
gas giant planets found in multi-star systems. Over three years, we completed a
survey of 50 targets ("Friends of Hot Jupiters") with 27 targets showing some
signature of multi-body interaction (misaligned or eccentric orbits) and 23
targets in a control sample (well-aligned and circular orbits). We report the
masses, projected separations, and confirmed common proper motion for the 19
stellar companions found around 17 stars. Correcting for survey incompleteness,
we report companion fractions of , , and
in our total, misaligned/eccentric, and control samples, respectively. This
total stellar companion fraction is larger than the fraction of
field stars with companions approximately AU. We observe no
correlation between misaligned/eccentric hot Jupiter systems and the incidence
of stellar companions. Combining this result with our previous radial velocity
survey, we determine that of hot Jupiters are part of
multi-planet and/or multi-star systems.Comment: typos and references updated; 25 pages, 7 figures and 10 tables,
accepted for publication in Ap
The Hybridization of National Collective Bargaining Systems: The Impact of the Economic Crisis on the Transformation of Collective Bargaining in the European Union
In this article it is argued that the economic crisis has made national collective bargaining systems increasingly multi-layered, perforated and dynamically unstable, i.e. hybrid. The authors explain these transformations in terms of the concomitance of two different sources of change which do not necessarily follow the same logics. The first source stems from national systems’ endogenous logic of path dependency and the second from pressure to reform in accordance with exogenously applied strategies and logics. It is argued that these sources act like a whipsaw, pushing and pulling national collective bargaining systems between the two logics, leading to hybrid collective bargaining systems
WASP-12b and HAT-P-8b are Members of Triple Star Systems
We present high spatial resolution images that demonstrate that WASP-12b and HAT-P-8b orbit the primary stars of hierarchical triple star systems. In each case, two distant companions with colors and brightnesses consistent with M dwarfs co-orbit the hot Jupiter planet host as well as one another. Our adaptive optics images spatially resolve the secondary around WASP-12, previously identified by Bergfors et al. and Crossfield et al. into two distinct sources separated by 84.3 ± 0.6 mas (21 ± 3 AU). We find that the secondary to HAT-P-8, also identified by Bergfors et al., is in fact composed of two stars separated by 65.3 ± 0.5 mas (15 ± 1 AU). Our follow-up observations demonstrate physical association through common proper motion. HAT-P-8 C has a particularly low mass, which we estimate to be 0.18 ± 0.02 M☉ using photometry. Due to their hierarchy, WASP-12 BC and HAT-P-8 BC will enable the first dynamical mass determination for hot Jupiter stellar companions. These previously well studied planet hosts now represent higher-order multi-star systems with potentially complex dynamics, underscoring the importance of diffraction-limited imaging and providing additional context for understanding the migrant population of transiting hot Jupiters
Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase
BACKGROUND Cerebrospinal fluid (CSF) protein analysis is an important element in the diagnostic chain for various central nervous system (CNS) pathologies. Among multiple existing approaches to interpreting measured protein levels, the Reiber diagram is particularly robust with respect to physiologic inter-individual variability, as it uses multiple subject-specific anchoring values. Beyond reliable identification of abnormal protein levels, the Reiber diagram has the potential to elucidate their pathophysiologic origin. In particular, both reduction of CSF drainage from the cranio-spinal space as well as blood-CNS barrier dysfunction have been suggested ρas possible causes of increased concentration of blood-derived proteins. However, there is disagreement on which of the two is the true cause. METHODS We designed two computational models to investigate the mechanisms governing protein distribution in the spinal CSF. With a one-dimensional model, we evaluated the distribution of albumin and immunoglobulin G (IgG), accounting for protein transport rates across blood-CNS barriers, CSF dynamics (including both dispersion induced by CSF pulsations and advection by mean CSF flow) and CSF drainage. Dispersion coefficients were determined a priori by computing the axisymmetric three-dimensional CSF dynamics and solute transport in a representative segment of the spinal canal. RESULTS Our models reproduce the empirically determined hyperbolic relation between albumin and IgG quotients. They indicate that variation in CSF drainage would yield a linear rather than the expected hyperbolic profile. In contrast, modelled barrier dysfunction reproduces the experimentally observed relation. CONCLUSIONS High levels of albumin identified in the Reiber diagram are more likely to originate from a barrier dysfunction than from a reduction in CSF drainage. Our in silico experiments further support the hypothesis of decreasing spinal CSF drainage in rostro-caudal direction and emphasize the physiological importance of pulsation-driven dispersion for the transport of large molecules in the CSF
Institutions or resources and capabilities? Explaining engagement in European sectoral social dialogue
We analyse social partner engagement in European sectoral social dialogue, testing two prominent theories to disentangle sector and country dynamics: institutional and resources and capabilities theories. While institutional theory accounted for certain social partner preferences, resources and capability theory proved stronger in predicting participation and provided insight into regulatory preferences. We conclude that resources and capability theory better explains our case, associating it with weaknesses of transnational governance. Specifically, limited incentives for participation mean that social partners with fewer resources forego participation, entailing pre-eminence of social partners with greater resources and hindering outcomes reflecting national institutional influences
- …
