422 research outputs found
A smooth cascade of wrinkles at the edge of a floating elastic film
The mechanism by which a patterned state accommodates the breaking of
translational symmetry by a phase boundary or a sample wall has been addressed
in the context of Landau branching in type-I superconductors, refinement of
magnetic domains, and compressed elastic sheets. We explore this issue by
studying an ultrathin polymer sheet floating on the surface of a fluid,
decorated with a pattern of parallel wrinkles. At the edge of the sheet, this
corrugated profile meets the fluid meniscus. Rather than branching of wrinkles
into generations of ever-smaller sharp folds, we discover a smooth cascade in
which the coarse pattern in the bulk is matched to fine structure at the edge
by the continuous introduction of discrete, higher wavenumber Fourier modes.
The observed multiscale morphology is controlled by a dimensionless parameter
that quantifies the relative strength of the edge forces and the rigidity of
the bulk pattern.Comment: 4 pages, 4 figure
A broadband FFT spectrometer for radio and millimeter astronomy
The core architecture, tests in the lab and first results of a Fast Fourier
Transform (FFT) spectrometer are described. It is based on a commercially
available fast digital sampler (AC240) with an on-board Field Programmable Gate
Array (FPGA). The spectrometer works continuously and has a remarkable total
bandwidth of 1 GHz, resolved into 16384 channels. The data is sampled with 8
bits, yielding a dynamic range of 48 dB. An Allan time of more than 2000 s and
an SFDR of 37 dB were measured. First light observations with the KOSMA
telescope show a perfect spectrum without internal or external spurious
signals.Comment: Astronomy and Astrophysics, in pres
Froth-like minimizers of a non local free energy functional with competing interactions
We investigate the ground and low energy states of a one dimensional non
local free energy functional describing at a mean field level a spin system
with both ferromagnetic and antiferromagnetic interactions. In particular, the
antiferromagnetic interaction is assumed to have a range much larger than the
ferromagnetic one. The competition between these two effects is expected to
lead to the spontaneous emergence of a regular alternation of long intervals on
which the spin profile is magnetized either up or down, with an oscillation
scale intermediate between the range of the ferromagnetic and that of the
antiferromagnetic interaction. In this sense, the optimal or quasi-optimal
profiles are "froth-like": if seen on the scale of the antiferromagnetic
potential they look neutral, but if seen at the microscope they actually
consist of big bubbles of two different phases alternating among each other. In
this paper we prove the validity of this picture, we compute the oscillation
scale of the quasi-optimal profiles and we quantify their distance in norm from
a reference periodic profile. The proof consists of two main steps: we first
coarse grain the system on a scale intermediate between the range of the
ferromagnetic potential and the expected optimal oscillation scale; in this way
we reduce the original functional to an effective "sharp interface" one. Next,
we study the latter by reflection positivity methods, which require as a key
ingredient the exact locality of the short range term. Our proof has the
conceptual interest of combining coarse graining with reflection positivity
methods, an idea that is presumably useful in much more general contexts than
the one studied here.Comment: 38 pages, 2 figure
Prior Mating Experience Modulates the Dispersal of Drosophila in Males More Than in Females
Cues from both an animal’s internal physiological state and its local environment may influence its decision to disperse. However, identifying and quantifying the causative factors underlying the initiation of dispersal is difficult in uncontrolled natural settings. In this study, we automatically monitored the movement of fruit flies and examined the influence of food availability, sex, and reproductive status on their dispersal between laboratory environments. In general, flies with mating experience behave as if they are hungrier than virgin flies, leaving at a greater rate when food is unavailable and staying longer when it is available. Males dispersed at a higher rate and were more active than females when food was unavailable, but tended to stay longer in environments containing food than did females. We found no significant relationship between weight and activity, suggesting the behavioral differences between males and females are caused by an intrinsic factor relating to the sex of a fly and not simply its body size. Finally, we observed a significant difference between the dispersal of the natural isolate used throughout this study and the widely-used laboratory strain, Canton-S, and show that the difference cannot be explained by allelic differences in the foraging gene
Reduced basis isogeometric mortar approximations for eigenvalue problems in vibroacoustics
We simulate the vibration of a violin bridge in a multi-query context using
reduced basis techniques. The mathematical model is based on an eigenvalue
problem for the orthotropic linear elasticity equation. In addition to the nine
material parameters, a geometrical thickness parameter is considered. This
parameter enters as a 10th material parameter into the system by a mapping onto
a parameter independent reference domain. The detailed simulation is carried
out by isogeometric mortar methods. Weakly coupled patch-wise tensorial
structured isogeometric elements are of special interest for complex geometries
with piecewise smooth but curvilinear boundaries. To obtain locality in the
detailed system, we use the saddle point approach and do not apply static
condensation techniques. However within the reduced basis context, it is
natural to eliminate the Lagrange multiplier and formulate a reduced eigenvalue
problem for a symmetric positive definite matrix. The selection of the
snapshots is controlled by a multi-query greedy strategy taking into account an
error indicator allowing for multiple eigenvalues
Performance of distributed multiscale simulations
Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption
Functional divergence in the role of N-linked glycosylation in smoothened signaling
The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice
- …
