1,410 research outputs found

    Quantum field theory on quantum graphs and application to their conductance

    Full text link
    We construct a bosonic quantum field on a general quantum graph. Consistency of the construction leads to the calculation of the total scattering matrix of the graph. This matrix is equivalent to the one already proposed using generalized star product approach. We give several examples and show how they generalize some of the scattering matrices computed in the mathematical or condensed matter physics litterature. Then, we apply the construction for the calculation of the conductance of graphs, within a small distance approximation. The consistency of the approximation is proved by direct comparison with the exact calculation for the `tadpole' graph.Comment: 32 pages; misprints in tree graph corrected; proofs of consistency and unitarity adde

    Potassium: a new actor on the globular cluster chemical evolution stage. The case of NGC 2808

    Get PDF
    We derive [K/Fe] abundance ratios for 119 stars in the globular cluster NGC 2808, all of them having O, Na, Mg and Al abundances homogeneously measured in previous works. We detect an intrinsic star-to-star spread in the Potassium abundance. Moreover [K/Fe] abundance ratios display statistically significant correlations with [Na/Fe] and [Al/Fe], and anti-correlations with [O/Fe] and [Mg/Fe]. All the four Mg deficient stars ([Mg/Fe]<0.0) discovered so far in NGC 2808 are enriched in K by ~0.3 dex with respect to those with normal [Mg/Fe]. NGC 2808 is the second globular cluster, after NGC 2419, where a clear Mg-K anti-correlation is detected, albeit of weaker amplitude. The simultaneous correlation/anti-correlation of [K/Fe] with all the light elements usually involved in the chemical anomalies observed in globular cluster stars, strongly support the idea that these abundance patterns are due to the same self-enrichment mechanism that produces Na-O and Mg-Al anti-correlations. This finding suggests that detectable spreads in K abundances may be typical in the massive globular clusters where the self-enrichment processes are observed to produce their most extreme manifestations.Comment: Accepted for publication by ApJ, 5 pages, 3 figure

    Quantum wire junctions breaking time reversal invariance

    Full text link
    We explore the possibility to break time reversal invariance at the junction of quantum wires. The universal features in the bulk of the wires are described by the anyon Luttinger liquid. A simple necessary and sufficient condition for the breaking of time reversal invariance is formulated in terms of the scattering matrix at the junction. The phase diagram of a junction with generic number of wires is investigated in this framework. We give an explicit classification of those critical points which can be reached by bosonization and study the interplay between their stability and symmetry content.Comment: Extended version (Appendices C and D and some references added, typos corrected) to appear in Phys. Rev.

    Goldstone Fermion Dark Matter

    Full text link
    We propose that the fermionic superpartner of a weak-scale Goldstone boson can be a natural WIMP candidate. The p-wave annihilation of this `Goldstone fermion' into pairs of Goldstone bosons automatically generates the correct relic abundance, whereas the XENON100 direct detection bounds are evaded due to suppressed couplings to the Standard Model. Further, it is able to avoid indirect detection constraints because the relevant s-wave annihilations are small. The interactions of the Goldstone supermultiplet can induce non-standard Higgs decays and novel collider phenomenology.Comment: 25 pages, 6 figures. References added, minor typos corrected. Submitted to JHE

    First evidence of fully spatially mixed first and second generations in globular clusters: the case of NGC 6362

    Full text link
    We present the first evidence of multiple populations in the Galactic globular cluster NGC 6362. We used optical and near-UV Hubble Space Telescope and ground based photometry, finding that both the sub giant and red giant branches are split in two parallel sequences in all color magnitude diagrams where the F336W filter (or U band) is used. This cluster is one of the least massive globulars (M_tot~5x10^4 M_sun) where multiple populations have been detected so far. Even more interestingly and at odds with any previous finding, we observe that the two identified populations share the same radial distribution all over the cluster extension. NGC 6362 is the first system where stars from different populations are found to be completely spatially mixed. Based on N-body and hydrodynamical simulations of multiple stellar generations, we argue that, to reproduce these findings, NGC 6362 should have lost up to the 80% of its original massComment: Accepted for publication by ApJ Letters; 6 pages, 5 figure

    Quantum Fields on Star Graphs with Bound States at the Vertex

    Full text link
    We investigate the propagation of a massless scalar field on a star graph, modeling the junction of nn quantum wires. The vertex of the graph is represented by a point-like impurity (defect), characterized by a one-body scattering matrix. The general case of off-critical scattering matrix with bound and/or antibound states is considered. We demonstrate that the contribution of these states to the scalar field is fixed by causality (local commutativity), which is the key point of our investigation. Two different regimes of the theory emerge at this stage. If bound sates are absent, the energy is conserved and the theory admits unitary time evolution. The behavior changes if bound states are present, because each such state generates a kind of damped harmonic oscillator in the spectrum of the field. These oscillators lead to the breakdown of time translation invariance. We study in both regimes the electromagnetic conductance of the Luttinger liquid on the quantum wire junction. We derive an explicit expression for the conductance in terms of the scattering matrix and show that antibound and bound states have a different impact, giving raise to oscillations with exponentially damped and growing amplitudes respectively.Comment: LaTex 1+29 pages, 2 figures: Expanded version with new title and abstract; clarifying comments, fig.2 and references added; final version to appear in J. Math. Phy

    Kaluza-Klein gravitons at LHC2

    Get PDF
    In this work we study constraints from new searches for heavy particles at the LHC on the allowed masses and couplings of a KK Graviton in a holographic composite Higgs model. Keeping new electroweak states heavy such that electroweak precision tests are satisfied, we control the mass of the lightest KK graviton using a brane kinetic term. With this we study KK graviton masses from 0.5-3 TeV. In our analysis we also employ Little Randall-Sundrum (RS) Models, characterised by a lower UV scale in the 5D model which in turn implies modified couplings to massless bulk fields. Viewing this scenario as a strongly coupled 4D theory with a composite Higgs boson, the KK graviton is interpreted as a composite spin-2 state and the varying UV scale corresponds to a varying intermediate scale between the cutoff of the low energy effective theory and the Planck scale. We find that KK gravitons with masses in the range 0.5-3 TeV are compatible with current collider constraints, where the most promising channels for detecting these states are the di-photon and ZZ channels. A detection is more likely in the little RS models, in which the dual gauge theory has a larger number of colours than in traditional RS models
    corecore