207 research outputs found

    Breakthroughs in the management accounting science: imaging a balanced scorecard thought by lean philosophy rationales

    Get PDF
    This work aims at providing a proposal for a new way of conducting the balanced scorecard (BSC), assuming a model that fulfils the leading features of lean philosophy and designing a research strategy that could explain how to act for arguing a "Lean-Balanced Scorecard". Management solutions inclined towards lean thinking try to solve contemporary worldwide market challenges by focusing on a virtuous corporate functioning, thanks to a shared philosophy that relies entirely on the minimization of any kind of waste: their main target is to achieve business goals in a way that is absolutely flexible and can be shared at any strategy level within the firm. In the transition towards new management accounting paradigms, might the use of the BSC enhance information processing, useful for spreading lean thinking all over the firm, and for testing its effects? Moreover, thanks to lean thinking, might we suppose improvements related to the BSC functioning, by streamlining that information processing? According to the literature, little is known about how to answer these questions. By answering them, however, we may find innovative solutions towards a better measuring process of firm success-especially from the perspectives of integrated management reporting activities in turbulent times

    Relationship between ecosystem productivity and photosynthetically-active radiation for northern peatlands

    Get PDF
    We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe. NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = α PPFD Pmax/(α PPFD + Pmax) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = β PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = −2.0μmol m−2s−1 for bogs and −2.7 μmol m−2s−1 for fens) and lower NEE at moderate and high light levels (Pmax = 5.2 μmol m−2s−1 for bogs and 10.8 μmol m−2s−1 for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = −2.4 μmol m−2s−1) and NEE rates (α = 0.020 and Pmax = 9.2μmol m−2s−1) than the upland ecosystems (closed canopy forest, grassland, and cropland) summarized by Ruimy et al. [1995]. Despite this low productivity, northern peatland soil carbon pools are generally 5–50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    Selective logging weakly influences species co‐occurrence in a community of tropical understorey birds

    Get PDF
    1. Selective logging is a major driver of tropical land-use change, causing reductions in forest specialist species with concurrent increases in edge-tolerant species. A key question is understanding how selective logging impacts co-occurrence and assembly mechanisms in vertebrate communities as forests recover post-logging. 2. Using a 10-year, repeat-sample study of understorey bird species in Borneo, we compare the structure of species co-occurrences over time between old-growth unlogged and logged forests, investigating the roles of functional traits and local abundance in driving co-occurrence patterns. 3. Co-occurrence patterns were resilient to selective logging over time, although patterns were not consistent across all species in both forest types. Species with more specialised diets showed a significant tendency towards low fidelity, while species that engage in aerial foraging, soaring and gliding exhibited a significant tendency to have low values of fidelity in both types of forest. Changes in co-occurrence patterns were also significantly influenced by changes in local abundance. 4. Our results indicate that niche segregation and environmental filtering operate to shape the assemblage of the avian community in both forest types, but co-occurrence was resilient to selective logging over time. Our results also underscore the role of some species in regulating avian assemblages and the long-term conservation value of logged tropical forests

    Can downwelling far-infrared radiances over Antarctica be estimated from mid-infrared information?

    Get PDF
    Far-infrared (FIR: 100cm−1<wavenumber, ν<667 cm−1) radiation emitted by the Earth and its atmosphere plays a key role in the Earth's energy budget. However, because of a lack of spectrally resolved measurements, radiation schemes in climate models suffer from a lack of constraint across this spectral range. Exploiting a method developed to estimate upwelling far-infrared radiation from mid-infrared (MIR: 667cm−1<ν<1400 cm−1) observations, we explore the possibility of inferring zenith FIR downwelling radiances in zenith-looking observation geometry, focusing on clear-sky conditions in Antarctica. The methodology selects a MIR predictor wavenumber for each FIR wavenumber based on the maximum correlation seen between the different spectral ranges. Observations from the REFIR-PAD instrument (Radiation Explorer in the Far Infrared – Prototype for Application and Development) and high-resolution radiance simulations generated from co-located radio soundings are used to develop and assess the method. We highlight the impact of noise on the correlation between MIR and FIR radiances by comparing the observational and theoretical cases. Using the observed values in isolation, between 150 and 360 cm−1, differences between the “true” and “extended” radiances are less than 5 %. However, in spectral bands of low signal, between 360 and 667 cm−1, the impact of instrument noise is strong and increases the differences seen. When the extension of the observed spectra is performed using regression coefficients based on noise-free radiative transfer simulations the results show strong biases, exceeding 100 % where the signal is low. These biases are reduced to just a few percent if the noise in the observations is accounted for in the simulation procedure. Our results imply that while it is feasible to use this type of approach to extend mid-infrared spectral measurements to the far-infrared, the quality of the extension will be strongly dependent on the noise characteristics of the observations. A good knowledge of the atmospheric state associated with the measurements is also required in order to build a representative regression model

    Trend of salt intake measured by 24-h urine collection in the Italian adult population between the 2008 and 2018 CUORE project surveys

    Get PDF
    Background and aims: The WHO Global Action Plan for the Prevention of non-communicable diseases (NCDs) recommends a 30% relative reduction in mean population salt/sodium intake. The study assessed the trend in the habitual salt intake of the Italian adult population from 2008 to 2012 to 2018–2019 based on 24-h urinary sodium excretion, in the framework of the CUORE Project/MINISAL-GIRCSI/MENO SALE PIU’ SALUTE national surveys. Methods and results: Data were from cross-sectional surveys of randomly selected age and sex–stratified samples of resident persons aged 35–74 years in 10 (out of 20) Italian Regions distributed in North, Centre and South of the Country. Urinary sodium and creatinine measurements were carried out in a central laboratory. The analyses included 942 men and 916 women examined in 2008–2012, and 967 men and 1010 women examined in 2018–2019. The age-standardized mean daily population salt (sodium chloride) intake was 10.8 g (95% CI 10.5–11.1) in men and 8.3 g (8.1–8.5) in women in 2008–2012 and respectively 9.5 g (9.3–9.8) and 7.2 g (7.0–7.4) in 2018–2019. A statistically significant (p<0.0001) salt intake reduction was thus observed over 10 years for both genders, and all age, body mass index (BMI) and educational classes. Conclusions: The average daily salt intake of the Italian general adult population remains higher than the WHO recommended level, but a significant reduction of 12% in men and 13% in women has occurred in the past ten years. These results encourage the initiatives undertaken by the Italian Ministry of Health aimed at the reduction of salt intake at the population level

    Trend in potassium intake and Na/K ratio in the Italian adult population between the 2008 and 2018 CUORE project surveys

    Get PDF
    Background and aims: Low potassium intake, in addition to high sodium, has been associated with higher risk of hypertension and CVD. The Study assessed habitual potassium intake and sodium/potassium ratio of the Italian adult population from 2008 to 2012 to 2018–2019 based on 24-h urine collection, in the framework of the CUORE Project/MINISAL-GIRCSI/MENO SALE PIU’ SALUTE national surveys. Methods and results: Data were from cross-sectional surveys of randomly selected age-and-sex stratified samples of resident persons aged 35–74 years in 10 (out of 20) Italian regions. Urinary electrolyte and creatinine measurements were performed in a central laboratory. Analyses considered 942 men and 916 women, examined in 2008–2012, and 967 men and 1010 women, examined in 2018–2019. In 2008–2012, the age-standardized mean of potassium intake (urinary potassium accounts for 70% of potassium intake) was 3147 mg (95% CI 3086–3208) in men and 2784 mg (2727–2841) in women, whereas in 2018–2019, it was 3043 mg (2968–3118) and 2561 mg (2508–2614) respectively. In 2008–2012, age-adjusted prevalence of persons with an adequate potassium intake (i.e. ≥ 3510 mg/day) was 31% (95% CI 28–34%) for men and 18% (16–21%) for women; in 2018–2019, it was 26% (23–29%) and 12% (10–14%) respectively. The sodium/potassium ratio significantly decreased both in men and women. Conclusions: The average daily potassium intake of the Italian general adult population remains lower than the WHO and EFSA recommended level. These results suggest the need of a revision to strengthen initiatives for the promotion of an adequate potassium intake at the population level

    Drivers of vascular plant, bryophyte and lichen richness in grasslands along a precipitation gradient (central Apennines, Italy)

    Get PDF
    Questions: Semi-natural grasslands in Southern Europe are biodiversity hotspots, yet their patterns of plant species richness are less studied than in Central Europe. In the Central Apennines (Italy), there are large areas of dry calcareous grasslands, across a steep gradient of mean annual precipitation (from 650 to 1350 mm within c. 30 km). We asked: How do these grasslands compare to other Palaearctic grasslands in richness levels? How do the precipitation gradient and other environmental predictors influence species richness? Does this influence differ among taxonomic groups? Location: Submontane and lower-montane belt of the Central Apennines (Abruzzo and Lazio, Italy). Methods: We recorded the species richness of vascular plants and (terricolous) bryophytes and lichens in 97 plots of 10 m2, aligning them with the precipitation gradient while maintaining geological substrate and elevation similar. Mean temperature and precipitation were estimated with a high-resolution regional model. A wide array of environmental variables (including soil properties and grazing load) were measured for each plot. Multivariate relationships within and between response and predictor variables were studied with Canonical Correlation. The relative importance of predictors on response variables was modeled with Boosted Regression Trees

    Significant quantum effects in hydrogen activation

    Get PDF
    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ∼190 K and for D2 up to ∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation
    corecore