414 research outputs found
Gold nanoparticles as catalysts for low-temperature WGS reaction
OBJECTIVES: This study aimed to compare the phenotype of Rett syndrome cases with C-terminal deletions to that of cases with different MECP2 mutations and to examine the phenotypic variation within C-terminal deletions. METHODS: Cases were selected from InterRett, an international database and from the population-based Australian Rett Syndrome Database. Cases (n=832) were included if they had a pathogenic MECP2 mutation in which the nature of the amino acid change was known. Three severity scale systems were used, and individual aspects of the phenotype were also compared. RESULTS: Lower severity was associated with C-terminal deletions (n=79) compared to all other MECP2 mutations (e.g. Pineda scale C-terminals mean 15.0 (95% CI 14.0–16.0) vs 16.2 (15.9–16.5). Cases with C-terminal deletions were more likely to have a normal head circumference (odds ratio 3.22, 95% CI 1.53 – 6.79) and weight (odds ratio 2.97, 95% CI 1.25–5.76). Onset of stereotypies tended to be later (median age 2.5 years vs 2 years, p<0.001 from survival analysis), and age of learning to walk tended to be earlier (median age 1.6 years vs 2 years, p=0.002 from survival analysis). Those with C-terminal deletions occurring later in the region had lower average severity scores than those occurring earlier in the region. CONCLUSION: In terms of overall severity C-terminal deletion cases would appear to be in the middle of the range. In terms of individual aspects of phenotype growth and ability to ambulate appear to be particular strengths. By pooling data internationally this study has achieved the case numbers to provide a phenotypic profile of C-terminal deletions in Rett syndrome
Cerebral Venous Thrombosis in the Mediterranean Area in Children
Cerebral Venous Sinus (sinovenous) Thrombosis (CSVT) is a serious and rare disorder, increasingly recognized and diagnosed in pediatric patients. The etiology and pathophisiology has not yet been completely clarified, and unlike adults with CSVT, management in children and neonates remains controversial. However, morbidity and mortality are significant, highlighting the continued need for high-quality studies within this field. The following review will highlight aspects of CSVT in the mediteranian area in children
Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios
Purpose: Despite the recognized clinical value of exome-based diagnostics, methods for comprehensive genomic interpretation remain immature. Diagnoses are based on known or presumed pathogenic variants in genes already associated with a similar phenotype. Here, we extend this paradigm by evaluating novel bioinformatics approaches to aid identification of new gene–disease associations. Methods: We analyzed 119 trios to identify both diagnostic genotypes in known genes and candidate genotypes in novel genes. We considered qualifying genotypes based on their population frequency and in silico predicted effects we also characterized the patterns of genotypes enriched among this collection of patients. Results: We obtained a genetic diagnosis for 29 (24%) of our patients. We showed that patients carried an excess of damaging de novo mutations in intolerant genes, particularly those shown to be essential in mice (P = 3.4 × 10−8). This enrichment is only partially explained by mutations found in known disease-causing genes. Conclusion: This work indicates that the application of appropriate bioinformatics analyses to clinical sequence data can also help implicate novel disease genes and suggest expanded phenotypes for known disease genes. These analyses further suggest that some cases resolved by whole-exome sequencing will have direct therapeutic implications
The EFF-1A Cytoplasmic Domain Influences Hypodermal Cell Fusions in C. elegans But Is Not Dependent on 14-3-3 Proteins.
BACKGROUND: Regulatory and biophysical mechanisms of cell-cell fusion are largely unknown despite the fundamental requirement for fused cells in eukaryotic development. Only two cellular fusogens that are not of clear recent viral origin have been identified to date, both in nematodes. One of these, EFF-1, is necessary for most cell fusions in Caenorhabditis elegans. Unregulated EFF-1 expression causes lethality due to ectopic fusion between cells not developmentally programmed to fuse, highlighting the necessity of tight fusogen regulation for proper development. Identifying factors that regulate EFF-1 and its paralog AFF-1 could lead to discovery of molecular mechanisms that control cell fusion upstream of the action of a membrane fusogen. Bioinformatic analysis of the EFF-1A isoform\u27s predicted cytoplasmic domain (endodomain) previously revealed two motifs that have high probabilities of interacting with 14-3-3 proteins when phosphorylated. Mutation of predicted phosphorylation sites within these motifs caused measurable loss of eff-1 gene function in cell fusion in vivo. Moreover, a human 14-3-3 isoform bound to EFF-1::GFP in vitro. We hypothesized that the two 14-3-3 proteins in C. elegans, PAR-5 and FTT-2, may regulate either localization or fusion-inducing activity of EFF-1.
METHODOLOGY/PRINCIPAL FINDINGS: Timing of fusion events was slightly but significantly delayed in animals unable to produce full-length EFF-1A. Yet, mutagenesis and live imaging showed that phosphoserines in putative 14-3-3 binding sites are not essential for EFF-1::GFP accumulation at the membrane contact between fusion partner cells. Moreover, although the EFF-1A endodomain was required for normal rates of eff-1-dependent epidermal cell fusions, reduced levels of FTT-2 and PAR-5 did not visibly affect the function of wild-type EFF-1 in the hypodermis.
CONCLUSIONS/SIGNIFICANCE: Deletion of the EFF-1A endodomain noticeably affects the timing of hypodermal cell fusions in vivo. However, prohibiting phosphorylation of candidate 14-3-3-binding sites does not impact localization of the fusogen. Hypodermal membrane fusion activity persists when 14-3-3 expression levels are reduced
A tecpr2 knockout mouse exhibits age-dependent neuroaxonal dystrophy associated with autophagosome accumulation
Understanding and addressing mathematics anxiety using perspectives from education, psychology and neuroscience
Mathematics anxiety is a significant barrier to mathematical learning. In this article, we propose that state or on-task mathematics anxiety impacts on performance, while trait mathematics anxiety leads to the avoidance of courses and careers involving mathematics. We also demonstrate that integrating perspectives from education, psychology and neuroscience contributes to a greater understanding of mathematics anxiety in its state and trait forms. Research from cognitive psychology and neuroscience illustrates the effect of state mathematics anxiety on performance and research from cognitive, social and clinical psychology, and education can be used to conceptualise the origins of trait mathematics anxiety and its impact on avoidant behaviour. We also show that using this transdisciplinary framework to consider state and trait mathematics anxiety separately makes it possible to identify strategies to reduce the negative effects of mathematics anxiety. Implementation of these strategies among particularly vulnerable groups, such as pre-service teachers, could be beneficial
Novel mutations in the CDKL5 gene, predicted effects and associated phenotypes
It has been found that CDKL5 gene mutations are responsible for early-onset epilepsy and drug resistance. We screened a population of 92 patients with classic/atypical Rett syndrome, 17 Angelman/Angelman-like patients and six
idiopathic autistic patients for CDKL5 mutations and exon deletions and
identified seven novel mutations: six in the Rett subset and one in an Angelman
patient. This last, an insertion in exon 11, c.903_904 dupGA, p.Leu302Aspfx49X,
is associated with a relatively mild clinical presentation as the patient is the only one capable of sitting and walking alone. Of the six mutations, two are de novo missense changes affecting highly conserved aminoacid residues, c.215 T > C p.Ile72Thr and c.380A > G p.His127Arg (present in a mosaic condition) found in
two girls with the most severe clinical presentation, while the remaining are the
splicing c.145 + 2 T > C and c.2376 + 5G > A, the c.1648C > T p.Arg550X and the
MPLA-identified c.162_99del261 mutation. RNA characterisation of four mutations
revealed the aberrant transcript of the missense allele (case 2) and not the stop mutation (case 3), but also allowed the splicing mutation (case 1) and the
c.-162_99del261 (case 4) to be ategorised as truncating. The obtained data reinforce the view that a more severe phenotype is due more to an altered protein than haploinsufficiency. Furthermore, the mutational repertoire of the CDKL5 gene
is shown to be expanded by testing patients with phenotypical overlap to Rett syndrome and applying multiplex ligation-dependent probe amplification
The phenotype associated with a large deletion on MECP2
Multiplex ligation-dependent Probe Amplification (MLPA) has become available for the detection of a large deletion on the MECP2 gene allowing genetic confirmation of previously unconfirmed cases of clinical Rett syndrome. This study describes the phenotype of those with a large deletion and compares with those with other pathogenic MECP2 mutations. Individuals were ascertained from the Australian Rett Syndrome and InterRett databases with data sourced from family and clinician questionnaires, and two case studies were constructed from the longitudinal Australian data. Regression and survival analysis were used to compare severity and age of onset of symptoms in those with and without a large deletion. Data were available for 974 individuals including 51 with a large deletion and ages ranged from 1 year 4 months to 49 years (median 9 years). Those with a large deletion were more severely affected than those with other mutation types. Specifically, individuals with large deletions were less likely to have learned to walk (OR 0.42, 95% CI: 0.22–0.79, P=0.007) and to be currently walking (OR 0.53, 95% CI: 0.26–1.10, P=0.089), and were at higher odds of being in the most severe category of gross motor function (OR 1.84, 95% CI: 0.98–3.48, P=0.057) and epilepsy (OR 2.72, 95% CI: 1.38–5.37, P=0.004). They also developed epilepsy, scoliosis, hand stereotypies and abnormal breathing patterns at an earlier age. We have described the disorder profile associated with a large deletion from the largest sample to date and have found that the phenotype is severe with motor skills particularly affected
4-Aminopyridine is a promising treatment option for patients with gain-of-function KCNA2-encephalopathy
Developmental and epileptic encephalopathies are devastating disorders characterized by epilepsy, intellectual disability, and other neuropsychiatric symptoms, for which available treatments are largely ineffective. Following a precision medicine approach, we show for KCNA2-encephalopathy that the K+ channel blocker 4-aminopyridine can antagonize gain-of-function defects caused by variants in the KV1.2 subunit in vitro, by reducing current amplitudes and negative shifts of steady-state activation and increasing the firing rate of transfected neurons. In n-of-1 trials carried out in nine different centers, 9 of 11 patients carrying such variants benefitted from treatment with 4-aminopyridine. All six patients experiencing daily absence, myoclonic, or atonic seizures became seizure-free (except some remaining provoked seizures). Two of six patients experiencing generalized tonic-clonic seizures showed marked improvement, three showed no effect, and one worsening. Nine patients showed improved gait, ataxia, alertness, cognition, or speech. 4-Aminopyridine was well tolerated up to 2.6 mg/kg per day. We suggest 4-aminopyridine as a promising tailored treatment in KCNA2-(gain-of-function)–encephalopathy and provide an online tool assisting physicians to select patients with gain-of-function mutations suited to this treatment
- …
