4,646 research outputs found
Faraday rotation: effect of magnetic field reversals
The standard formula for the rotation measure, RM, which determines the
position angle, , due to Faraday rotation, includes
contributions only from the portions of the ray path where the natural modes of
the plasma are circularly polarized. In small regions of the ray path where the
projection of the magnetic field on the ray path reverses sign (called QT
regions) the modes are nearly linearly polarized. The neglect of QT regions in
estimating RM is not well justified at frequencies below a transition frequency
where mode coupling changes from strong to weak. By integrating the
polarization transfer equation across a QT region in the latter limit, I
estimate the additional contribution needed to correct this
omission. In contrast with a result proposed by \cite{BB10}, is
small and probably unobservable. I identify a new source of circular
polarization, due to mode coupling in an asymmetric QT region. I also identify
a new circular-polarization-dependent correction to the dispersion measure at
low frequencies.Comment: 25 pages 1 figure, accepted for publication in The Astrophysical
Journa
Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells
Strong light-matter coupling has recently been demonstrated in sub-wavelength
volumes by coupling engineered optical transitions in semiconductor
heterostructures (e.g., quantum wells) to metasurface resonances via near
fields. It has also been shown that different resonator shapes may lead to
different Rabi splittings, though this has not yet been well explained. In this
paper, our aim is to understand the correlation between resonator shape and
Rabi splitting, and in particular determine and quantify the physical
parameters that affect strong coupling by developing an equivalent circuit
network model whose elements describe energy and dissipation. Because of the
subwavelength dimension of each metasurface element, we resort to the
quasi-static (electrostatic) description of the near-field and hence define an
equivalent capacitance associated to each dipolar element of a flat
metasurface, and we show that this is also able to accurately model the
phenomenology involved in strong coupling between the metasurface and the
intersubband transitions in quantum wells. We show that the spectral properties
and stored energy of a metasurface/quantum-well system obtained using our model
are in good agreement with both full-wave simulation and experimental results.
We then analyze metasurfaces made of three different resonator geometries and
observe that the magnitude of the Rabi splitting increases with the resonator
capacitance in agreement with our theory, providing a phenomenological
explanation for the resonator shape dependence of the strong coupling process.Comment: 10 pages, 10 figure
Quiescent Radio Emission from Southern Late-type M Dwarfs and a Spectacular Radio Flare from the M8 Dwarf DENIS 1048-3956
We report the results of a radio monitoring program conducted at the
Australia Telescope Compact Array to search for quiescent and flaring emission
from seven nearby Southern late-type M and L dwarfs. Two late-type M dwarfs,
the M7 V LHS 3003 and the M8 V DENIS 1048-3956, were detected in quiescent
emission at 4.80 GHz. The observed emission is consistent with optically thin
gyrosynchrotron emission from mildly relativistic (~1-10 keV) electrons with
source densities n_e ~ 10 G magnetic fields. DENIS
1048-3956 was also detected in two spectacular, short-lived flares, one at 4.80
GHz (peak f_nu = 6.0+/-0.8 mJy) and one at 8.64 GHz (peak f_nu = 29.6+/-1.0
mJy) approximately 10 minutes later. The high brightness temperature (T_B >~
10^13 K), short emission period (~4-5 minutes), high circular polarization
(~100%), and apparently narrow spectral bandwidth of these events imply a
coherent emission process in a region of high electron density (n_e ~
10^11-10^12 cm^-3) and magnetic field strength (B ~ 1 kG). If the two flare
events are related, the apparent frequency drift in the emission suggests that
the emitting source either moved into regions of higher electron or magnetic
flux density; or was compressed, e.g., by twisting field lines or gas motions.
The quiescent fluxes from the radio-emitting M dwarfs violate the Gudel-Benz
empirical radio/X-ray relations, confirming a trend previously noted by Berger
et al. (abridged)Comment: 28 pages, 8 figures, accepted for publication in Ap
Temporal Correlation of Hard X-rays and Meter/Decimeter Radio Structures in Solar Flares
We investigate the relative timing between hard X-ray (HXR) peaks and
structures in metric and decimetric radio emissions of solar flares using data
from the RHESSI and Phoenix-2 instruments. The radio events under consideration
are predominantly classified as type III bursts, decimetric pulsations and
patches. The RHESSI data are demodulated using special techniques appropriate
for a Phoenix-2 temporal resolution of 0.1s. The absolute timing accuracy of
the two instruments is found to be about 170 ms, and much better on the
average. It is found that type III radio groups often coincide with enhanced
HXR emission, but only a relatively small fraction ( 20%) of the groups
show close correlation on time scales 1s. If structures correlate, the HXRs
precede the type III emissions in a majority of cases, and by 0.690.19 s
on the average. Reversed drift type III bursts are also delayed, but
high-frequency and harmonic emission is retarded less. The decimetric
pulsations and patches (DCIM) have a larger scatter of delays, but do not have
a statistically significant sign or an average different from zero. The time
delay does not show a center-to-limb variation excluding simple propagation
effects. The delay by scattering near the source region is suggested to be the
most efficient process on the average for delaying type III radio emission
High-resolution wide-band Fast Fourier Transform spectrometers
We describe the performance of our latest generations of sensitive wide-band
high-resolution digital Fast Fourier Transform Spectrometer (FFTS). Their
design, optimized for a wide range of radio astronomical applications, is
presented. Developed for operation with the GREAT far infrared heterodyne
spectrometer on-board SOFIA, the eXtended bandwidth FFTS (XFFTS) offers a high
instantaneous bandwidth of 2.5 GHz with 88.5 kHz spectral resolution and has
been in routine operation during SOFIA's Basic Science since July 2011. We
discuss the advanced field programmable gate array (FPGA) signal processing
pipeline, with an optimized multi-tap polyphase filter bank algorithm that
provides a nearly loss-less time-to-frequency data conversion with
significantly reduced frequency scallop and fast sidelobe fall-off. Our digital
spectrometers have been proven to be extremely reliable and robust, even under
the harsh environmental conditions of an airborne observatory, with
Allan-variance stability times of several 1000 seconds. An enhancement of the
present 2.5 GHz XFFTS will duplicate the number of spectral channels (64k),
offering spectroscopy with even better resolution during Cycle 1 observations.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue
- …
