1,679 research outputs found
Cyclische Bis(amino)-arsa-, -stiba-, -bismachloride und ein spezielles Tris-(amino)bismutan
In den Trichloriden von Arsen, Antimon und Bismut lassen sich jeweils zwei Chloratome durch den Liganden -N(tBu)SiMe2N(tBu)- austauschen, wodurch viergliedrige Ringe (SiN2El) entstehen. Sowohl in Lösung (temperatur- und konzentrationsabhängige 1H-NMR-Spektren) als auch im Festkörper (Röntgenstrukturanalysen) besitzen die Verbindungen 3 (El = As), 4 (El = Sb) bzw. 5 (El = Bi) unterschiedliche Assoziationsgrade bzw. Strukturen. Das Arsenderivat 3 kristallisiert monoklin, in der Raumgruppe P21/c mit 4 Formeleinheiten pro Elementarzelle (a = 920,0(6), b = 1 462,9(9), c = 1240,8(7) pm, = 105,8(1)°), das Antimon- und Bismutderivat 4 und 5 sind isotyp und isostrukturell und kristallisieren ortho-rhombisch (Raumgruppe Pnma, Z = 4; Gitterkonstanten für 4: a = 1140,2(8), b = 1095,7(7), c = 1328,7(9) pm; für 5: a = 1105,1(5), b = 1123,3(5), c = 1340,0(8) pm). Während die Kristallstruktur von 3 im wesentlichen aus isolierten Molekülen besteht, die eine schwache Tendenz zu paarweiser Assoziation besitzen (AsClAs Brücken, AsCl = 234,5(1), ClAs = 442,3(1) pm), sind die Moleküle in den Kristallen von 4 und 5 eindimensional verkettet. Die zu den SbN2Si- bzw. BiN2Si-Ringen nahezu senkrecht stehenden Chlorsubstituenten treten mit Nachbarmolekülen derart in Wechselwirkung, daß jedes Sb- und Bi-Atom vierfach koordiniert wird und eine unendliche ElClElCl-Kette entsteht, die an den Chloratomen gewinkelt ist (4): 143,5°, (5): 145,7°. Die verbrückende Rolle des Chloratoms ist bei der Bi-Verbindung stärker ausgeprägt als bei der Sb-Verbindung (SbCl = 247,2(3), ClSb = 352,1(3) pm; BiCl = 274,8(4), ClBi = 304,7(4) pm). Als Nebenprodukt kann bei der Darstellung von 5, eine Verbindung 6 erhalten werden, die nur Stickstoffatome am Bismut gebunden hat: Me2Si(NtBu)2 BiN(tBu)SiMe2(tBu)NBi(NtBu)2SSiMe2. Diese Verbindung 6 kristallisiert monoklin (P21/c, a = 1474,2(3), b = 1477,6(3), c = 1997,7(6) pm, = 94,68(8)°). Die Abweichung von der C2-Symmetrie bei 6 (die zweizählige Achse verläuft durch die mittlere SiMe2-Gruppe) ist nur unbedeutend. Die BiN-Bindungslängen innerhalb der SiN2Bi-Ringe (BiN (Mittel) = 216,5(5) pm) sind kürzer als die außerhalb (BiN (Mittel) = 220,45(5) pm)
Fitting theories of nuclear binding energies
In developing theories of nuclear binding energy such as density-functional
theory, the effort required to make a fit can be daunting due to the large
number of parameters that may be in the theory and the large number of nuclei
in the mass table. For theories based on the Skyrme interaction, the effort can
be reduced considerably by using the singular value decomposition to reduce the
size of the parameter space. We find that the sensitive parameters define a
space of dimension four or so, and within this space a linear refit is adequate
for a number of Skyrme parameters sets from the literature. We do not find
marked differences in the quality of the fit between the SLy4, the Bky4 and SkP
parameter sets. The r.m.s. residual error in even-even nuclei is about 1.5 MeV,
half the value of the liquid drop model. We also discuss an alternative norm
for evaluating mass fits, the Chebyshev norm. It focuses attention on the cases
with the largest discrepancies between theory and experiment. We show how it
works with the liquid drop model and make some applications to models based on
Skyrme energy functionals. The Chebyshev norm seems to be more sensitive to new
experimental data than the root-mean-square norm. The method also has the
advantage that candidate improvements to the theories can be assessed with
computations on smaller sets of nuclei.Comment: 17 pages and 4 figures--version encorporates referee's comment
Optical properties of the vibrations in charged C molecules
The transition strengths for the four infrared-active vibrations of charged
C molecules are evaluated in self-consistent density functional theory
using the local density approximation. The oscillator strengths for the second
and fourth modes are strongly enhanced relative to the neutral C
molecule, in good agreement with the experimental observation of ``giant
resonances'' for those two modes. Previous theory, based on a ``charged
phonon'' model, predicted a quadratic dependence of the oscillator strength on
doping, but this is not borne out in our calculations.Comment: 10 pages, RevTeX3.
Universal Pion Freeze-out Phase-Space Density
Results on the pion freeze-out phase-space density in sulphur-nucleus, Pb-Pb
and pion-proton collisions at CERN-SPS are presented. All heavy-ion reactions
are consistent with the thermal Bose-Einstein distrtibution f=1/(exp(E/T)-1) at
T~120 MeV, modified for expansion. Pion-proton data are also consistent with f,
but at T~180 MeV.Comment: 1 page, 1 figure; 98' report for GSI-Darmstad
Source Dimensions in Ultrarelativistic Heavy Ion Collisions
Recent experiments on pion correlations, interpreted as interferometric
measurements of the collision zone, are compared with models that distinguish a
prehadronic phase and a hadronic phase. The models include prehadronic
longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and
rescattering of the produced hadrons. We find that the longitudinal and outward
radii are surprisingly sensitive to the algorithm used for two-body collisions.
The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a
heavy target requires the existence of a prehadronic phase which converts to
the hadronic phase at densities around 0.8-1.0 GeV/fm. The transverse radii
cannot be reproduced without introducing more complex dynamics into the
transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major
change is an additional discussion of the classical two-body collision
algorithm, a (compressed) postscript file of the complete paper including
figures can be obtained from Authors or via anonymous ftp at
ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.
Absorption of Energy at a Metallic Surface due to a Normal Electric Field
The effect of an oscillating electric field normal to a metallic surface may
be described by an effective potential. This induced potential is calculated
using semiclassical variants of the random phase approximation (RPA). Results
are obtained for both ballistic and diffusive electron motion, and for two and
three dimensional systems. The potential induced within the surface causes
absorption of energy. The results are applied to the absorption of radiation by
small metal spheres and discs. They improve upon an earlier treatment which
used the Thomas-Fermi approximation for the effective potential.Comment: 19 pages (Plain TeX), 2 figures, 1 table (Postscript
Microscopically-based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization
In a recent series of papers, Gebremariam, Bogner, and Duguet derived a
microscopically based nuclear energy density functional by applying the Density
Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral
effective field theory (EFT) two- and three-nucleon interactions. Due to the
structure of the chiral interactions, each coupling in the DME functional is
given as the sum of a coupling constant arising from zero-range contact
interactions and a coupling function of the density arising from the
finite-range pion exchanges. Since the contact contributions have essentially
the same structure as those entering empirical Skyrme functionals, a
microscopically guided Skyrme phenomenology has been suggested in which the
contact terms in the DME functional are released for optimization to
finite-density observables to capture short-range correlation energy
contributions from beyond Hartree-Fock. The present paper is the first attempt
to assess the ability of the newly suggested DME functional, which has a much
richer set of density dependencies than traditional Skyrme functionals, to
generate sensible and stable results for nuclear applications. The results of
the first proof-of-principle calculations are given, and numerous practical
issues related to the implementation of the new functional in existing Skyrme
codes are discussed. Using a restricted singular value decomposition (SVD)
optimization procedure, it is found that the new DME functional gives
numerically stable results and exhibits a small but systematic reduction of our
test function compared to standard Skyrme functionals, thus justifying
its suitability for future global optimizations and large-scale calculations.Comment: 17 pages, 6 figure
Hanbury-Brown--Twiss Analysis in a Solvable Model
The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is
tested with a simple model of meson production by resonance decay. We derive
conditions which should be satisfied in order to relate the measured momentum
correlation to the classical source size. The Bose correlation effects are
apparent in both the ratio of meson pairs to singles and in the ratio of like
to unlike pairs. With our parameter values, we find that the single particle
distribution is too distorted by the correlation to allow a straightforward
analysis using pair correlation normalized by the singles rates. An analysis
comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical
off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted
separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3
Pygmy dipole resonance as a constraint on the neutron skin of heavy nuclei
The isotopic dependence of the isovector Pygmy dipole response in tin is
studied within the framework of the relativistic random phase approximation.
Regarded as an oscillation of the neutron skin against the isospin-symmetric
core, the pygmy dipole resonance may place important constraints on the neutron
skin of heavy nuclei and, as a result, on the equation of state of neutron-rich
matter. The present study centers around two questions. First, is there a
strong correlation between the development of a neutron skin and the emergence
of low-energy isovector dipole strength? Second, could one use the recently
measured Pygmy dipole resonance in 130Sn and 132Sn to discriminate among
theoretical models? For the first question we found that while a strong
correlation between the neutron skin and the Pygmy dipole resonance exists, a
mild anti-correlation develops beyond 120Sn. The answer to the second question
suggests that models with overly large neutron skins--and thus stiff symmetry
energies--are in conflict with experiment.Comment: 16 pages with 6 figure
- …
