2,285 research outputs found

    Robust Reliability or reliable robustness? - Integrated consideration of robustness and reliability aspects

    Get PDF
    Commonly, the terms reliability and robustness are used to describe products and processes, which are in accordance with the customer requirements and fulfil high quality expectations. However, significant differences between the underlying definitions raise the questions how reliable robust products are and vice versa. For a comprehensive understanding and to use existing synergies between both domains, this paper discusses the basic principles of Reliability- and Robust Design theory. The development of a comprehensive model will enable an integrated consideration of both domains in the future, will offer guidance for a systematic choice of corresponding methods and is thus aiming to pave the way for future research.Als zuverlässig bzw. robust werden im Allgemeinen Produkte oder Prozesse beschrieben, die den bestehenden Qualitätsanforderungen entsprechen. Gleichzeitig haben Definitionen aus dem Bereich Zuverlässigkeitstechnik und Robust Design allerdings keine grundlegende Übereinstimmung. In Wissenschaft und Praxis ist weitgehend ungeklärt, inwieweit die Entwicklung robuster Produkte zwangsläufig die geforderte Zuverlässigkeit sicherstellt bzw. ob eine Zuverlässigkeitsanalyse notwendigerweise zur Robustheit führt. Um den zwischen beiden Theorien bestehenden Zusammenhang zu verdeutlichen und gezielt auszunutzen, werden im vorliegen Beitrag Vorteile und potentielle Synergien diskutiert. Die Entwicklung eines grundlegenden Modells für eine integrierte Betrachtung von Produktzuverlässigkeit und -robustheit bietet darüber hinaus erste Leitlinien für die Auswahl geeigneter Entwicklungsmethoden und somit eine geeignete Grundlage für zukünftige Untersuchungen

    Antihydrogen studies in ALPHA

    Get PDF
    he ALPHA experiment studies antihydrogen as a means to investigate the symmetry of matter and antimatter. Spectroscopic studies of the anti-atom hold the promise of the most precise direct comparisons of matter and antimatter possible. ALPHA was the first to trap antihydrogen in a magnetic trap, allowing the first ever detection of atomic transitions in an anti-atom. More recently, through stochastic heating, we have also been able to put a new limit on the charge neutrality of antihydrogen. ALPHA is currently preparing to perform the first laser-spectroscopy of antihydrogen, hoping to excite the 2s state using a two-photon transition from the 1s state. We discuss the recent results as well as the key developments that led to these successes and discuss how we are preparing to perform the first laser-spectroscopy. We will also discuss plans to use our novel technique for gravitational tests on antihydrogen for a direct measurement of the sign of the gravitational force on antihydrogen

    Vibration Budget for SuperB

    Get PDF
    International audienceWe pre­sent a vi­bra­tion bud­get for the Su­perB ac­cel­er­a­tor. This in­cludes ground mo­tion data, mo­tion sen­si­tiv­i­ty of ma­chine com­po­nents, and beam feed­back sys­tem re­quire­ments

    Status of the Super-B factory Design

    Full text link
    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036^{36} cm2^{-2} sec1^{-1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Υ\Upsilon(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low βy\beta_y^\star without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications

    Production of antihydrogen at reduced magnetic field for anti-atom trapping

    Get PDF
    We have demonstrated production of antihydrogen in a 1,,T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3,,T) and ATRAP (5,,T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the ALPHA (Antihydrogen Laser PHysics Apparatus) device, which can capture and cool antiprotons at 3,,T, and then mix the antiprotons with positrons at 1,,T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed

    Alpha Antihydrogen Experiment

    Full text link
    ALPHA is an experiment at CERN, whose ultimate goal is to perform a precise test of CPT symmetry with trapped antihydrogen atoms. After reviewing the motivations, we discuss our recent progress toward the initial goal of stable trapping of antihydrogen, with some emphasis on particle detection techniques.Comment: Invited talk presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 201

    Antihydrogen and mirror-trapped antiproton discrimination: Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    Full text link
    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.Comment: 17 figure

    Compression of Antiproton Clouds for Antihydrogen Trapping

    Full text link
    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma
    corecore