9,750 research outputs found

    Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBa2_2CuO4+δ_{4+\delta}

    Full text link
    High magnetic fields have revealed a surprisingly small Fermi-surface in underdoped cuprates, possibly resulting from Fermi-surface reconstruction due to an order parameter that breaks translational symmetry of the crystal lattice. A crucial issue concerns the doping extent of this state and its relationship to the principal pseudogap and superconducting phases. We employ pulsed magnetic field measurements on the cuprate HgBa2_2CuO4+δ_{4+\delta} to identify signatures of Fermi surface reconstruction from a sign change of the Hall effect and a peak in the temperature-dependent planar resistivity. We trace the termination of Fermi-surface reconstruction to two hole concentrations where the superconducting upper critical fields are found to be enhanced. One of these points is associated with the pseudogap end-point near optimal doping. These results connect the Fermi-surface reconstruction to both superconductivity and the pseudogap phenomena.Comment: 5 pages. 3 Figures. PNAS (2020

    Current jets, disorder, and linear magnetoresistance in the silver chalcogenides

    Get PDF
    The inhomogeneous distribution of excess or deficient silver atoms lies behind the large and linear transverse magnetoresistance displayed by Ag_(2±δ)Se and Ag_(2±δ)Te, introducing spatial conductivity fluctuations with length scales independent of the cyclotron radius. We report a negative, nonsaturating longitudinal magnetoresistance up to at least 60 T, which becomes most negative where the bands cross and the effect of conductivity fluctuations is most acute. Thinning samples down to 10   μm suppresses the negative response, revealing the essential length scale in the problem and paving the way for designer magnetoresistive devices

    Planes, Chains, and Orbits: Quantum Oscillations and High Magnetic Field Heat Capacity in Underdoped YBCO

    Full text link
    The underlying physics of the magnetic-field-induced resistive state in high temperature cuprate superconductors remains a mystery. One interpretation is that the application of magnetic field destroys the d-wave superconducting gap to uncover a Fermi surface that behaves like a conventional (i.e.Fermi Liquid) metal (1). Another view is that an applied magnetic field destroys long range superconducting phase coherence, but the superconducting gap amplitude survives (2, 3). By measuring the specific heat of ultra-clean YBa2Cu3O6.56 (YBCO 6.56), we obtain a measure of the quasi-particle density of states from the superconducting state well into the magnetic-field-induced resistive state. We have found that at very high magnetic fields the specific heat exhibits both the conventional temperature dependence and quantum oscillations expected for a Fermi Liquid. On the other hand, the magnetic field dependence of the quasi-particle density of states follows a \sqrt{H} behavior that persists right through the zero-resistance transition, evidencing the fully developed d-wave superconducting gap over the entire magnetic field range measured. The coexistence of these two phenomena pose a rigorous thermodynamic constraint on theories of high-magnetic-field resistive state in the cuprates

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Interaction effects and quantum phase transitions in topological insulators

    Full text link
    We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0T = 0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.Comment: 13 pages, 12 figures. Published versio
    corecore