9,309 research outputs found
Understanding and Improving the Wang-Landau Algorithm
We present a mathematical analysis of the Wang-Landau algorithm, prove its
convergence, identify sources of errors and strategies for optimization. In
particular, we found the histogram increases uniformly with small fluctuation
after a stage of initial accumulation, and the statistical error is found to
scale as with the modification factor . This has implications
for strategies for obtaining fast convergence.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings
A scaled quantum computer with donor spins in silicon would benefit from a
viable semiconductor framework and a strong inherent decoupling of the qubits
from the noisy environment. Coupling neighbouring spins via the natural
exchange interaction according to current designs requires gate control
structures with extremely small length scales. We present a silicon
architecture where bismuth donors with long coherence times are coupled to
electrons that can shuttle between adjacent quantum dots, thus relaxing the
pitch requirements and allowing space between donors for classical control
devices. An adiabatic SWAP operation within each donor/dot pair solves the
scalability issues intrinsic to exchange-based two-qubit gates, as it does not
rely on sub-nanometer precision in donor placement and is robust against noise
in the control fields. We use this SWAP together with well established global
microwave Rabi pulses and parallel electron shuttling to construct a surface
code that needs minimal, feasible local control.Comment: Published version - more detailed discussions, robustness to
dephasing pointed out additionall
Hopping Conduction in Uniaxially Stressed Si:B near the Insulator-Metal Transition
Using uniaxial stress to tune the critical density near that of the sample,
we have studied in detail the low-temperature conductivity of p-type Si:B in
the insulating phase very near the metal-insulator transition. For all values
of temperature and stress, the conductivity collapses onto a single universal
scaling curve. For large values of the argument, the scaling function is well
fit by the exponentially activated form associated with variable range hopping
when electron-electron interactions cause a soft Coulomb gap in the density of
states at the Fermi energy. The temperature dependence of the prefactor,
corresponding to the T-dependence of the critical curve, has been determined
reliably for this system, and is proportional to the square-root of T. We show
explicitly that nevlecting the prefactor leads to substantial errors in the
determination of the scaling parameters and the critical exponents derived from
them. The conductivity is not consistent with Mott variable-range hopping in
the critical region nor does it obey this form for any range of the parameters.
Instead, for smaller argument of the scaling function, the conductivity of Si:B
is well fit by an exponential form with exponent 0.31 related to the critical
exponents of the system at the metal- insulator transition.Comment: 13 pages, 6 figure
Exchange Monte Carlo Method and Application to Spin Glass Simulations
We propose an efficient Monte Carlo algorithm for simulating a
``hardly-relaxing" system, in which many replicas with different temperatures
are simultaneously simulated and a virtual process exchanging configurations of
these replica is introduced. This exchange process is expected to let the
system at low temperatures escape from a local minimum. By using this algorithm
the three-dimensional Ising spin glass model is studied. The ergodicity
time in this method is found much smaller than that of the multi-canonical
method. In particular the time correlation function almost follows an
exponential decay whose relaxation time is comparable to the ergodicity time at
low temperatures. It suggests that the system relaxes very rapidly through the
exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe
Exchange coupling between silicon donors: the crucial role of the central cell and mass anisotropy
Donors in silicon are now demonstrated as one of the leading candidates for
implementing qubits and quantum information processing. Single qubit
operations, measurements and long coherence times are firmly established, but
progress on controlling two qubit interactions has been slower. One reason for
this is that the inter donor exchange coupling has been predicted to oscillate
with separation, making it hard to estimate in device designs. We present a
multivalley effective mass theory of a donor pair in silicon, including both a
central cell potential and the effective mass anisotropy intrinsic in the Si
conduction band. We are able to accurately describe the single donor properties
of valley-orbit coupling and the spatial extent of donor wave functions,
highlighting the importance of fitting measured values of hyperfine coupling
and the orbital energy of the levels. Ours is a simple framework that can
be applied flexibly to a range of experimental scenarios, but it is nonetheless
able to provide fast and reliable predictions. We use it to estimate the
exchange coupling between two donor electrons and we find a smoothing of its
expected oscillations, and predict a monotonic dependence on separation if two
donors are spaced precisely along the [100] direction.Comment: Published version. Corrected b and B values from previous versio
Spin Waves in Disordered III-V Diluted Magnetic Semiconductors
We propose a new scheme for numerically computing collective-mode spectra for
large-size systems, using a reformulation of the Random Phase Approximation. In
this study, we apply this method to investigate the spectrum and nature of the
spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity
band picture to describe the interaction of the charge carriers with the local
Mn spins. The spin-wave spectrum is shown to depend sensitively on the
positional disorder of the Mn atoms inside the host semiconductor. Both
localized and extended spin-wave modes are found. Unusual spin and charge
transport is implied.Comment: 14 pages, including 11 figure
Absence of Conventional Spin-Glass Transition in the Ising Dipolar System LiHo_xY_{1-x}F_4
The magnetic properties of single crystals of LiHo_xY_{1-x}F_4 with x=16.5%
and x=4.5% were recorded down to 35 mK using a micro-SQUID magnetometer. While
this system is considered as the archetypal quantum spin glass, the detailed
analysis of our magnetization data indicates the absence of a phase transition,
not only in a transverse applied magnetic field, but also without field. A
zero-Kelvin phase transition is also unlikely, as the magnetization seems to
follow a non-critical exponential dependence on the temperature. Our analysis
thus unmasks the true, short-ranged nature of the magnetic properties of the
LiHo_xY_{1-x}F_4 system, validating recent theoretical investigations
suggesting the lack of phase transition in this system.Comment: 5 pages, 4 figure
Photometric study of distant open clusters in the second quadrant: NGC 7245, King 9, King 13 and IC 166
We present a UBV CCD photometric study of four open clusters, NGC 7245, King 9, IC 166 and King 13, located between . All are embedded in a rich galactic field. NGC 7245 and King 9 are close together in the sky and have similar reddenings. The distances and ages are: NGC 7245, 3.80.35 kpc and 400 Myr; King 9 (the most distant cluster in this quadrant) 7.91.1 kpc and 3.0 Gyr. King 13 is 3.10.3 kpc distant and 300 Myr old. King 9 and IC 166 (4.80.5 kpc distant & 1 Gyr old) may be metal poor clusters (Z=0.008), as estimated from isochrone fitting. The average value of the distance of young clusters from the galactic plane in the above longitude range and beyond 2 kpc (16 pc, for 64 clusters), indicates that the young disk bends towards the southern latitudes
- …
