68 research outputs found
Historicism
As the rebuilding of Berlin’s eighteenth-century Stadtschloss nears completion, German History turns its attention to the phenomenon of historicism: to the recreation of historical artefacts and practices (sometimes at astonishing expense). Historicism reached its high point in the nineteenth century, when individuals and communities turned to the medieval period to address some of the challenges of modernization. But the urge to revive extended back into the medieval period itself and continues into the twenty-first century. What motivated and what continues to motivate such recreations? As a theme, historicism provides an opportunity for fruitful dialogue between premodern and modern scholars. It also challenges us as historians to consider the value of revivals, whether produced by Berlin politicians, by Hollywood filmmakers or by medieval re-enactors. What happens — or what should happen — when academic scholarship encounters..
The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth
I review the excursion set theory (EST) of dark matter halo formation and
clustering. I recount the Press-Schechter argument for the mass function of
bound objects and review the derivation of the Press-Schechter mass function in
EST. The EST formalism is powerful and can be applied to numerous problems. I
review the EST of halo bias and the properties of void regions. I spend
considerable time reviewing halo growth in the EST. This section culminates
with descriptions of two Monte Carlo methods for generating halo mass accretion
histories. In the final section, I emphasize that the standard EST approach is
the result of several simplifying assumptions. Dropping these assumptions can
lead to more faithful predictions and a more versatile formalism. One such
assumption is the constant height of the barrier for nonlinear collapse. I
review implementations of the excursion set approach with arbitrary barrier
shapes. An application of this is the now well-known improvement to standard
EST that follows from the ellipsoidal-collapse barrier. Additionally, I
emphasize that the statement that halo accretion histories are independent of
halo environments is a simplifying assumption, rather than a prediction of the
theory. I review the method for constructing correlated random walks of the
density field in more general cases. I construct a simple toy model with
correlated walks and I show that excursion set theory makes a qualitatively
simple and general prediction for the relation between halo accretion histories
and halo environments: regions of high density preferentially contain
late-forming halos and conversely for regions of low density. I conclude with a
brief discussion of this prediction in the context of recent numerical studies
of the environmental dependence of halo properties. (Abridged)Comment: 62 pages, 19 figures. Review article based on lectures given at the
Sixth Summer School of the Helmholtz Institute for Supercomputational
Physics. Accepted for Publication in IJMPD. Comments Welcom
On the Back Reaction Problem for Gravitational Perturbations
We derive the effective energy-momentum tensor for cosmological perturbations
and prove its gauge-invariance. The result is applied to study the influence of
perturbations on the behaviour of the Friedmann background in inflationary
Universe scenarios. We found that the back reaction of cosmological
perturbations on the background can become important already at energies below
the self-reproduction scale.Comment: 4 pages, uses LATE
Averaging in Cosmology
In this paper we discuss the effect of local inhomogeneities on the global
expansion of nearly FLRW universes, in a perturbative setting. We derive a
generic linearized averaging operation for metric perturbations from basic
assumptions, and we explicify the issue of gauge invariance. We derive a gauge
invariant expression for the back-reaction of density inhomogeneities on the
global expansion of perturbed FLRW spacetimes, in terms of observable
quantities, and we calculate the effect quantitatively. Since we do not adopt a
comoving gauge, our result incorporates the back-reaction on the metric due to
scalar velocity and vorticity perturbations. The results are compared with the
results by other authors in this field.Comment: 24 pages, Latex, accepted for publication in Phys. Rev.
Hydrodynamic approach to the evolution of cosmological structures
A hydrodynamic formulation of the evolution of large-scale structure in the
Universe is presented. It relies on the spatially coarse-grained description of
the dynamical evolution of a many-body gravitating system. Because of the
assumed irrelevance of short-range (``collisional'') interactions, the way to
tackle the hydrodynamic equations is essentially different from the usual case.
The main assumption is that the influence of the small scales over the
large-scale evolution is weak: this idea is implemented in the form of a
large-scale expansion for the coarse-grained equations. This expansion builds a
framework in which to derive in a controlled manner the popular ``dust'' model
(as the lowest-order term) and the ``adhesion'' model (as the first-order
correction). It provides a clear physical interpretation of the assumptions
involved in these models and also the possibility to improve over them.Comment: 14 pages, 3 figures. Version to appear in Phys. Rev.
Age of the Universe: Influence of the Inhomogeneities on the global Expansion-Factor
For the first time we calculate quantitatively the influence of
inhomogeneities on the global expansion factor by averaging the Friedmann
equation. In the framework of the relativistic second-order
Zel'dovich-approximation scheme for irrotational dust we use observational
results in form of the normalisation constant fixed by the COBE results and we
check different power spectra, namely for adiabatic CDM, isocurvature CDM, HDM,
WDM, Strings and Textures. We find that the influence of the inhomogeneities on
the global expansion factor is very small. So the error in determining the age
of the universe using the Hubble constant in the usual way is negligible. This
does not imply that the effect is negligible for local astronomical
measurements of the Hubble constant. Locally the determination of the
redshift-distance relation can be strongly influenced by the peculiar velocity
fields due to inhomogeneities. Our calculation does not consider such effects,
but is contrained to comparing globally homogeneous and averaged inhomogeneous
matter distributions. In addition we relate our work to previous treatments.Comment: 10 pages, version accepted by Phys. Rev.
Lagrangian theory of structure formation in relativistic cosmology I: Lagrangian framework and definition of a nonperturbative approximation
In this first paper we present a Lagrangian framework for the description of
structure formation in general relativity, restricting attention to
irrotational dust matter. As an application we present a self-contained
derivation of a general-relativistic analogue of Zel'dovich's approximation for
the description of structure formation in cosmology, and compare it with
previous suggestions in the literature. This approximation is then
investigated: paraphrasing the derivation in the Newtonian framework we provide
general-relativistic analogues of the basic system of equations for a single
dynamical field variable and recall the first-order perturbation solution of
these equations. We then define a general-relativistic analogue of Zel'dovich's
approximation and investigate its implications by functionally evaluating
relevant variables, and we address the singularity problem. We so obtain a
possibly powerful model that, although constructed through extrapolation of a
perturbative solution, can be used to put into practice nonperturbatively, e.g.
problems of structure formation, backreaction problems, nonlinear properties of
gravitational radiation, and light-propagation in realistic inhomogeneous
universe models. With this model we also provide the key-building blocks for
initializing a fully relativistic numerical simulation.Comment: 21 pages, content matches published version in PRD, discussion on
singularities added, some formulas added, some rewritten and some correcte
Newtonian Cosmology in Lagrangian Formulation: Foundations and Perturbation Theory
The ``Newtonian'' theory of spatially unbounded, self--gravitating,
pressureless continua in Lagrangian form is reconsidered. Following a review of
the pertinent kinematics, we present alternative formulations of the Lagrangian
evolution equations and establish conditions for the equivalence of the
Lagrangian and Eulerian representations. We then distinguish open models based
on Euclidean space from closed models based (without loss of generality)
on a flat torus \T^3. Using a simple averaging method we show that the
spatially averaged variables of an inhomogeneous toroidal model form a
spatially homogeneous ``background'' model and that the averages of open
models, if they exist at all, in general do not obey the dynamical laws of
homogeneous models. We then specialize to those inhomogeneous toroidal models
whose (unique) backgrounds have a Hubble flow, and derive Lagrangian evolution
equations which govern the (conformally rescaled) displacement of the
inhomogeneous flow with respect to its homogeneous background. Finally, we set
up an iteration scheme and prove that the resulting equations have unique
solutions at any order for given initial data, while for open models there
exist infinitely many different solutions for given data.Comment: submitted to G.R.G., TeX 30 pages; AEI preprint 01
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
Dark Energy from structure: a status report
The effective evolution of an inhomogeneous universe model in any theory of
gravitation may be described in terms of spatially averaged variables. In
Einstein's theory, restricting attention to scalar variables, this evolution
can be modeled by solutions of a set of Friedmann equations for an effective
volume scale factor, with matter and backreaction source terms. The latter can
be represented by an effective scalar field (`morphon field') modeling Dark
Energy.
The present work provides an overview over the Dark Energy debate in
connection with the impact of inhomogeneities, and formulates strategies for a
comprehensive quantitative evaluation of backreaction effects both in
theoretical and observational cosmology. We recall the basic steps of a
description of backreaction effects in relativistic cosmology that lead to
refurnishing the standard cosmological equations, but also lay down a number of
challenges and unresolved issues in connection with their observational
interpretation.
The present status of this subject is intermediate: we have a good
qualitative understanding of backreaction effects pointing to a global
instability of the standard model of cosmology; exact solutions and
perturbative results modeling this instability lie in the right sector to
explain Dark Energy from inhomogeneities. It is fair to say that, even if
backreaction effects turn out to be less important than anticipated by some
researchers, the concordance high-precision cosmology, the architecture of
current N-body simulations, as well as standard perturbative approaches may all
fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59
pages, 2 figures; matches published versio
- …
