431 research outputs found
Study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions
The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer
reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was
produced using the REX-ISOLDE facility at CERN. The outgoing protons were
detected with the T-REX silicon detector array. The MINIBALL germanium array
was used to detect gamma rays from the excited states in 12Be. The gamma-ray
detection enabled a clear identification of the four known bound states in
12Be, and each of the states has been studied individually. Differential cross
sections over a large angular range have been extracted. Spectroscopic factors
for each of the states have been determined from DWBA calculations and have
been compared to previous experimental and theoretical results
Low-energy Coulomb excitation of Fe and Mn following in-beam decay of Mn
Sub-barrier Coulomb-excitation was performed on a mixed beam of Mn and
Fe, following in-trap decay of Mn at REX-ISOLDE,
CERN. The trapping and charge breeding times were varied in order to alter the
composition of the beam, which was measured by means of an ionisation chamber
at the zero-angle position of the Miniball array. A new transition was observed
at 418~keV, which has been tentatively associated to a
transition. This fixes the relative
positions of the -decaying and states in Mn for
the first time. Population of the state was observed in Fe
and the cross-section determined by normalisation to the Ag target
excitation, confirming the value measured in recoil-distance lifetime
experiments.Comment: 9 pages, 10 figure
"Safe" Coulomb Excitation of 30Mg
We report on the first radioactive beam experiment performed at the recently
commissioned REX-ISOLDE facility at CERN in conjunction with the highly
efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy
of 2.25 MeV/u together with a thin nat-Ni target, Coulomb excitation of the
first excited 2+ states of the projectile and target nuclei well below the
Coulomb barrier was observed. From the measured relative de-excitation gamma
ray yields the B(E2; 0+ -> 2+) value of 30Mg was determined to be 241(31)
e2fm4. Our result is lower than values obtained at projectile fragmentation
facilities using the intermediate-energy Coulomb excitation method, and
confirms the theoretical conjecture that the neutron-rich magnesium isotope
30Mg lies still outside the ``island of inversion''
Spectroscopy of Na: shell evolution toward the drip line
Excited states in Na have been studied using the -decay of
implanted Ne ions at GANIL/LISE as well as the in-beam -ray
spectroscopy at the NSCL/S800 facility. New states of positive
(J=3,4) and negative (J=1-5) parity are proposed. The
former arise from the coupling between 0d protons and a 0d
neutron, while the latter are due to couplings with 1p or 0f
neutrons. While the relative energies between the J=1-4 states are
well reproduced with the USDA interaction in the N=17 isotones, a progressive
shift in the ground state binding energy (by about 500 keV) is observed between
F and Al. This points to a possible change in the proton-neutron
0d-0d effective interaction when moving from stability to the
drip line. The presence of J=1-4 negative parity states around 1.5
MeV as well as of a candidate for a J=5 state around 2.5 MeV give
further support to the collapse of the N=20 gap and to the inversion between
the 0f and 1p levels below Z=12. These features are discussed
in the framework of Shell Model and EDF calculations, leading to predicted
negative parity states in the low energy spectra of the F and O
nuclei.Comment: Exp\'erience GANIL/LISE et NSCL/S80
Effect of wind, thermal convection, and variation in flight strategies on the daily rhythm and flight paths of migrating raptors at Georgia's Black Sea coast
Every autumn, large numbers of raptors migrate through geographical convergence zones to avoid crossing large bodies of water. At coastal convergence zones, raptors may aggregate along coastlines because of convective or wind conditions. However, the effect of wind and thermal convection on migrating raptors may vary depending on local landscapes and weather, and on the flight strategies of different raptors. From 20 August to 14 October 2008 and 2009, we studied the effect of cloud development and crosswinds on the flight paths of raptors migrating through the eastern Black Sea convergence zone, where coastal lowlands at the foothills of the Pontic Mountains form a geographical bottleneck 5-km-wide near Batumi, the capital of the Independent Republic of Ajaria in southwestern Georgia. To identify key correlates of local aggregation, we examined diurnal variation in migration intensity and coastal aggregation of 11 species of raptors categorized based on size and flight strategies. As reported at other convergence zones, migration intensity of large obligate-soaring species peaked during the core period of thermal activity at mid-day. When clouds developed over interior mountains and limited thermal convection, these large obligate-soaring species aggregated near the coast. However, medium-sized soaring migrants that occasionally use flapping flight did not aggregate at the coast when clouds over the mountains weakened thermal convection. Numbers of alternate soaring-flapping harriers (Circus spp.) peaked during early morning, with these raptors depending more on flapping flight during a time of day with poor thermal convection. Small sparrowhawks (Accipiter spp.) aggregated at the coast during periods when winds blew offshore, suggesting aggregation caused by wind drift. Thus, weather conditions, including cloud cover and wind speed and direction, can influence the daily rhythm and flight paths of migrating raptors and, therefore, should be accounted for before inferring population trends from migration counts
- …
