3,773 research outputs found

    Stability of the magnetic Schr\"odinger operator in a waveguide

    Full text link
    The spectrum of the Schr\"odinger operator in a quantum waveguide is known to be unstable in two and three dimensions. Any enlargement of the waveguide produces eigenvalues beneath the continuous spectrum. Also if the waveguide is bent eigenvalues will arise below the continuous spectrum. In this paper a magnetic field is added into the system. The spectrum of the magnetic Schr\"odinger operator is proved to be stable under small local deformations and also under small bending of the waveguide. The proof includes a magnetic Hardy-type inequality in the waveguide, which is interesting in its own

    Penn State Get Away Special

    Get PDF
    Three proposed spaceborne experiments to be conducted by equipment in the Get Away Special (GAS) payload are described. The specific contribution and effect of convection in heat transfer is discussed. Investigations of the surface tension of two liquids in space environment and the problem of liquid slosh in spin stabilized satellites are reviewed

    Elliptic operators in even subspaces

    Full text link
    In the paper we consider the theory of elliptic operators acting in subspaces defined by pseudodifferential projections. This theory on closed manifolds is connected with the theory of boundary value problems for operators violating Atiyah-Bott condition. We prove an index formula for elliptic operators in subspaces defined by even projections on odd-dimensional manifolds and for boundary value problems, generalizing the classical result of Atiyah-Bott. Besides a topological contribution of Atiyah-Singer type, the index formulas contain an invariant of subspaces defined by even projections. This homotopy invariant can be expressed in terms of the eta-invariant. The results also shed new light on P.Gilkey's work on eta-invariants of even-order operators.Comment: 39 pages, 2 figure

    Abelian subgroups of Garside groups

    Full text link
    In this paper, we show that for every abelian subgroup HH of a Garside group, some conjugate g1Hgg^{-1}Hg consists of ultra summit elements and the centralizer of HH is a finite index subgroup of the normalizer of HH. Combining with the results on translation numbers in Garside groups, we obtain an easy proof of the algebraic flat torus theorem for Garside groups and solve several algorithmic problems concerning abelian subgroups of Garside groups.Comment: This article replaces our earlier preprint "Stable super summit sets in Garside groups", arXiv:math.GT/060258

    On the continuous spectral component of the Floquet operator for a periodically kicked quantum system

    Full text link
    By a straightforward generalisation, we extend the work of Combescure from rank-1 to rank-N perturbations. The requirement for the Floquet operator to be pure point is established and compared to that in Combescure. The result matches that in McCaw. The method here is an alternative to that work. We show that if the condition for the Floquet operator to be pure point is relaxed, then in the case of the delta-kicked Harmonic oscillator, a singularly continuous component of the Floquet operator spectrum exists. We also provide an in depth discussion of the conjecture presented in Combescure of the case where the unperturbed Hamiltonian is more general. We link the physics conjecture directly to a number-theoretic conjecture of Vinogradov and show that a solution of Vinogradov's conjecture solves the physics conjecture. The result is extended to the rank-N case. The relationship between our work and the work of Bourget on the physics conjecture is discussed.Comment: 25 pages, published in Journal of Mathematical Physic

    Dual generators of the fundamental group and the moduli space of flat connections

    Full text link
    We define the dual of a set of generators of the fundamental group of an oriented two-surface Sg,nS_{g,n} of genus gg with nn punctures and the associated surface Sg,nDS_{g,n}\setminus D with a disc DD removed. This dual is another set of generators related to the original generators via an involution and has the properties of a dual graph. In particular, it provides an algebraic prescription for determining the intersection points of a curve representing a general element of the fundamental group π1(Sg,nD)\pi_1(S_{g,n}\setminus D) with the representatives of the generators and the order in which these intersection points occur on the generators.We apply this dual to the moduli space of flat connections on Sg,nS_{g,n} and show that when expressed in terms both, the holonomies along a set of generators and their duals, the Poisson structure on the moduli space takes a particularly simple form. Using this description of the Poisson structure, we derive explicit expressions for the Poisson brackets of general Wilson loop observables associated to closed, embedded curves on the surface and determine the associated flows on phase space. We demonstrate that the observables constructed from the pairing in the Chern-Simons action generate of infinitesimal Dehn twists and show that the mapping class group acts by Poisson isomorphisms.Comment: 54 pages, 13 .eps figure

    Sufficient conditions for the existence of bound states in a central potential

    Full text link
    We show how a large class of sufficient conditions for the existence of bound states, in non-positive central potentials, can be constructed. These sufficient conditions yield upper limits on the critical value, gc()g_{\rm{c}}^{(\ell)}, of the coupling constant (strength), gg, of the potential, V(r)=gv(r)V(r)=-g v(r), for which a first \ell-wave bound state appears. These upper limits are significantly more stringent than hitherto known results.Comment: 7 page

    Upper and lower limits on the number of bound states in a central potential

    Full text link
    In a recent paper new upper and lower limits were given, in the context of the Schr\"{o}dinger or Klein-Gordon equations, for the number N0N_{0} of S-wave bound states possessed by a monotonically nondecreasing central potential vanishing at infinity. In this paper these results are extended to the number NN_{\ell} of bound states for the \ell-th partial wave, and results are also obtained for potentials that are not monotonic and even somewhere positive. New results are also obtained for the case treated previously, including the remarkably neat \textit{lower} limit N{{[σ/(2+1)+1]/2}}N_{\ell}\geq \{\{[\sigma /(2\ell+1)+1]/2\}\} with V(r)1/2]% \sigma =(2/\pi) \underset{0\leq r<\infty}{\max}[r| V(r)| ^{1/2}] (valid in the Schr\"{o}dinger case, for a class of potentials that includes the monotonically nondecreasing ones), entailing the following \textit{lower} limit for the total number NN of bound states possessed by a monotonically nondecreasing central potential vanishing at infinity: N\geq \{\{(\sigma+1)/2\}\} {(\sigma+3)/2\} \}/2 (here the double braces denote of course the integer part).Comment: 44 pages, 5 figure

    Scattering solutions in a network of thin fibers: small diameter asymptotics

    Full text link
    Small diameter asymptotics is obtained for scattering solutions in a network of thin fibers. The asymptotics is expressed in terms of solutions of related problems on the limiting quantum graph. We calculate the Lagrangian gluing conditions at vertices for the problems on the limiting graph. If the frequency of the incident wave is above the bottom of the absolutely continuous spectrum, the gluing conditions are formulated in terms of the scattering data for each individual junction of the network
    corecore