3,773 research outputs found
Stability of the magnetic Schr\"odinger operator in a waveguide
The spectrum of the Schr\"odinger operator in a quantum waveguide is known to
be unstable in two and three dimensions. Any enlargement of the waveguide
produces eigenvalues beneath the continuous spectrum. Also if the waveguide is
bent eigenvalues will arise below the continuous spectrum. In this paper a
magnetic field is added into the system. The spectrum of the magnetic
Schr\"odinger operator is proved to be stable under small local deformations
and also under small bending of the waveguide. The proof includes a magnetic
Hardy-type inequality in the waveguide, which is interesting in its own
Penn State Get Away Special
Three proposed spaceborne experiments to be conducted by equipment in the Get Away Special (GAS) payload are described. The specific contribution and effect of convection in heat transfer is discussed. Investigations of the surface tension of two liquids in space environment and the problem of liquid slosh in spin stabilized satellites are reviewed
Elliptic operators in even subspaces
In the paper we consider the theory of elliptic operators acting in subspaces
defined by pseudodifferential projections. This theory on closed manifolds is
connected with the theory of boundary value problems for operators violating
Atiyah-Bott condition. We prove an index formula for elliptic operators in
subspaces defined by even projections on odd-dimensional manifolds and for
boundary value problems, generalizing the classical result of Atiyah-Bott.
Besides a topological contribution of Atiyah-Singer type, the index formulas
contain an invariant of subspaces defined by even projections. This homotopy
invariant can be expressed in terms of the eta-invariant. The results also shed
new light on P.Gilkey's work on eta-invariants of even-order operators.Comment: 39 pages, 2 figure
Abelian subgroups of Garside groups
In this paper, we show that for every abelian subgroup of a Garside
group, some conjugate consists of ultra summit elements and the
centralizer of is a finite index subgroup of the normalizer of .
Combining with the results on translation numbers in Garside groups, we obtain
an easy proof of the algebraic flat torus theorem for Garside groups and solve
several algorithmic problems concerning abelian subgroups of Garside groups.Comment: This article replaces our earlier preprint "Stable super summit sets
in Garside groups", arXiv:math.GT/060258
On the continuous spectral component of the Floquet operator for a periodically kicked quantum system
By a straightforward generalisation, we extend the work of Combescure from
rank-1 to rank-N perturbations. The requirement for the Floquet operator to be
pure point is established and compared to that in Combescure. The result
matches that in McCaw. The method here is an alternative to that work. We show
that if the condition for the Floquet operator to be pure point is relaxed,
then in the case of the delta-kicked Harmonic oscillator, a singularly
continuous component of the Floquet operator spectrum exists. We also provide
an in depth discussion of the conjecture presented in Combescure of the case
where the unperturbed Hamiltonian is more general. We link the physics
conjecture directly to a number-theoretic conjecture of Vinogradov and show
that a solution of Vinogradov's conjecture solves the physics conjecture. The
result is extended to the rank-N case. The relationship between our work and
the work of Bourget on the physics conjecture is discussed.Comment: 25 pages, published in Journal of Mathematical Physic
Dual generators of the fundamental group and the moduli space of flat connections
We define the dual of a set of generators of the fundamental group of an
oriented two-surface of genus with punctures and the
associated surface with a disc removed. This dual is
another set of generators related to the original generators via an involution
and has the properties of a dual graph. In particular, it provides an algebraic
prescription for determining the intersection points of a curve representing a
general element of the fundamental group with the
representatives of the generators and the order in which these intersection
points occur on the generators.We apply this dual to the moduli space of flat
connections on and show that when expressed in terms both, the
holonomies along a set of generators and their duals, the Poisson structure on
the moduli space takes a particularly simple form. Using this description of
the Poisson structure, we derive explicit expressions for the Poisson brackets
of general Wilson loop observables associated to closed, embedded curves on the
surface and determine the associated flows on phase space. We demonstrate that
the observables constructed from the pairing in the Chern-Simons action
generate of infinitesimal Dehn twists and show that the mapping class group
acts by Poisson isomorphisms.Comment: 54 pages, 13 .eps figure
Sufficient conditions for the existence of bound states in a central potential
We show how a large class of sufficient conditions for the existence of bound
states, in non-positive central potentials, can be constructed. These
sufficient conditions yield upper limits on the critical value,
, of the coupling constant (strength), , of the
potential, , for which a first -wave bound state appears.
These upper limits are significantly more stringent than hitherto known
results.Comment: 7 page
Upper and lower limits on the number of bound states in a central potential
In a recent paper new upper and lower limits were given, in the context of
the Schr\"{o}dinger or Klein-Gordon equations, for the number of S-wave
bound states possessed by a monotonically nondecreasing central potential
vanishing at infinity. In this paper these results are extended to the number
of bound states for the -th partial wave, and results are also
obtained for potentials that are not monotonic and even somewhere positive. New
results are also obtained for the case treated previously, including the
remarkably neat \textit{lower} limit with (valid in the Schr\"{o}dinger case, for a class of potentials
that includes the monotonically nondecreasing ones), entailing the following
\textit{lower} limit for the total number of bound states possessed by a
monotonically nondecreasing central potential vanishing at infinity: N\geq
\{\{(\sigma+1)/2\}\} {(\sigma+3)/2\} \}/2 (here the double braces denote of
course the integer part).Comment: 44 pages, 5 figure
Scattering solutions in a network of thin fibers: small diameter asymptotics
Small diameter asymptotics is obtained for scattering solutions in a network
of thin fibers. The asymptotics is expressed in terms of solutions of related
problems on the limiting quantum graph. We calculate the Lagrangian gluing
conditions at vertices for the problems on the limiting graph. If the frequency
of the incident wave is above the bottom of the absolutely continuous spectrum,
the gluing conditions are formulated in terms of the scattering data for each
individual junction of the network
- …
