657 research outputs found

    Biology of pelagic sea turtles: effects of marine debris

    Get PDF
    Objectives: 1. Quantify the sub-lethal effect of debris ingestion (nutrient dilution) on nutrient gain 2. Model sub-lethal effects of debris ingestion on nutrient intake and growth 3. Evaluation of stress from entanglement on the loggerhead sea turtle 4. Movement patterns and behavior of pelagic-stage loggerheads in the eastern Atlantic 5. Document the genetic relationships of pelagic-stage loggerheads in the eastern Atlantic with rookeries in the southeast US (Document has 14 pages; lists publications resulting from research

    Migration and habitat use of sea turtles in the Bahamas

    Get PDF
    Objectives: Evaluate movement and distribution patterns of sea turtles in our series of study sites in The Bahamas. This objective includes the questions of where do the turtles come from, how long are they resident in these sites, and where do they go when they leave. Collect data that will allow us to develop techniques to compare habitat quality and to serve as a foundation for studies of the role of green turtles in seagrass ecosystems. Evaluate models for estimating growth rates and carrying capacities for sea turtles based on our data from a long-term study of immature green turtles in the southern Bahamas. (Document has 7 pages.

    Home range and habitat use by Kemp's Ridley turtles in West-Central Florida

    Get PDF
    The Kemp's ridley turtle (Lepidochelys kempii) is an endangered species whose recovery depends in part on the identification and protection of required habitats. We used radio and sonic telemetry on subadult Kemp's ridley turtles to investigate home-range size and habitat use in the coastal waters of west-central Florida from 1994 to 1996. We tracked 9 turtles during May-August up to 70 days after release and fou.ld they occupied 5-30 km2 foraging ranges. Compositional analyses indicated that turtles used rock outcroppings in their foraging ranges at a significantly higher proportion than expected. based on availability within the study area. Additionally. turtles used live bottom (e.g .• sessile invertebrates) and green macroalgae habitats significantly more than seagrass habitat. Similar studies are needed through'mt the Kemp's ridley turtles' range to investigate regional and stage-specific differences in habitat use. which can then be used to conserve important foraging areas

    Evaluating trends in abundance of immature green turtles, Chelonia mydas, in the Greater Caribbean

    Get PDF
    Many long-lived marine species exhibit life history traits. that make them more vulnerable to overexploitation. Accurate population trend analysis is essential for development and assessment of management plans for these species. However, because many of these species disperse over large geographic areas, have life stages inaccessible to human surveyors, and/or undergo complex developmental migrations, data on trends in abundance are often available for only one stage of the population, usually breeding adults. The green turtle (Chelonia mydas) is one of these long-lived species for which population trends are based almost exclusively on either numbers of females that emerge to nest or numbers of nests deposited each year on geographically restricted beaches. In this study, we generated estimates of annual abundance for juvenile green turtles at two foraging grounds in the Bahamas based on long-term capture-mark-recapture (CMR) studies at Union Creek (24 years) and Conception Creek (13 years), using a two-stage approach. First, we estimated recapture probabilities from CMR data using the Cormack-Jolly-Seber models in the software program MARK; second, we estimated annual abundance of green turtles. at both study sites using the recapture probabilities in a Horvitz-Thompson type estimation procedure. Green turtle abundance did not change significantly in Conception Creek, but, in Union Creek, green turtle abundance had successive phases of significant increase, significant decrease, and stability. These changes in abundance resulted from changes in immigration, not survival or emigration. The trends in abundance on the foraging grounds did not conform to the significantly increasing trend for the major nesting population at Tortuguero, Costa Rica. This disparity highlights the challenges of assessing population-wide trends of green turtles and other long-lived species. The best approach for monitoring population trends may be a combination of (1) extensive surveys to provide data for large-scale trends in relative population abundance, and (2) intensive surveys, using CMR techniques, to estimate absolute abundance and evaluate the demographic processes' driving the trends

    Estimates of survival probabilities for oceanic-stage loggerhead sea turtles (Caretta caretta) in the North Atlantic

    Get PDF
    Estimates of instantaneous mortality rates (Z) and annual apparent survival probabilities (Φ) were generated from catch-curve analyses for oceanic-stage juvenile loggerheads (Caretta caretta) in the waters of the Azores. Two age distributions were analyzed: the “total sample” of 1600 loggerheads primarily captured by sighting and dipnetting from a variety of vessels in the Azores between 1984 and 1995 and the “tuna sample” of 733 loggerheads (a subset of the total sample) captured by sighting and dipnetting from vessels in the commercial tuna fleet in the Azores between 1990 and 1992. Because loggerhead sea turtles begin to emigrate from oceanic to neritic habitats at age 7, the best estimates of instantaneous mortality rate (0.094) and annual survival probability (0.911) not confounded with permanent emigration were generated for age classes 2 through 6. These estimates must be interpreted with caution because of the assumptions upon which catch-curve analyses are based. However, these are the first directly derived estimates of mortality and survival probabilities for oceanic-stage sea turtles. Estimation of survival probabilities was identified as “an immediate and critical requirement” in 2000 by the Turtle Expert Working Group of the U.S. National Marine Fisheries Service

    Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants—liquid and gaseous petroleum compounds plus chemical dispersants—poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional "in-place, in-kind" restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, the authors provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    A Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants — liquid and gaseous petroleum compounds plus chemical dispersants — poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional “in-place, in-kind” restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, we provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    Sea turtles : University of Florida – University of the Azores connection 1984 – present. A review

    Get PDF
    The loggerhead (Caretta caretta) is the most common sea turtle in the Azores. Since they do not nest in the area, a tagging program was started in the 1980’s to try to discover their origin. The result based on size distribution, suggested that they mainly are coming from beaches in SE United States. A collaboration between University of Florida and the University of the Azores began in 1984 in order to proceed with further research.info:eu-repo/semantics/publishedVersio

    Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences

    Get PDF
    Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (~800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology
    corecore