1,061 research outputs found

    The Globular Cluster System of the Coma cD Galaxy NGC 4874 from Hubble Space Telescope ACS and WFC3/IR Imaging

    Get PDF
    We present new HST optical and near-infrared (NIR) photometry of the rich globular cluster (GC) system of NGC 4874, the cD galaxy in the core of the Coma cluster (Abell 1656). NGC 4874 was observed with the HST Advanced Camera for Surveys in the F475W (g) and F814W (I) passbands and the Wide Field Camera 3 IR Channel in F160W (H). The GCs in this field exhibit a bimodal optical color distribution with more than half of the GCs falling on the red side at g-I > 1. Bimodality is also present, though less conspicuously, in the optical-NIR I-H color. Consistent with past work, we find evidence for nonlinearity in the g-I versus I-H color-color relation. Our results thus underscore the need for understanding the detailed form of the color-metallicity relations in interpreting observational data on GC bimodality. We also find a very strong color-magnitude trend, or "blue tilt," for the blue component of the optical color distribution of the NGC 4874 GC system. A similarly strong trend is present for the overall mean I-H color as a function of magnitude; for M_814 < -10 mag, these trends imply a steep mass-metallicity scaling with ZMGC1.4±0.4Z\propto M_{\rm GC}^{1.4\pm0.4}, but the scaling is not a simple power law and becomes much weaker at lower masses. As in other similar systems, the spatial distribution of the blue GCs is more extended than that of the red GCs, partly because of blue GCs associated with surrounding cluster galaxies. In addition, the center of the GC system is displaced by 4+/-1 kpc towards the southwest from the luminosity center of NGC 4874, in the direction of NGC 4872. Finally, we remark on a dwarf elliptical galaxy with a noticeably asymmetrical GC distribution. Interestingly, this dwarf has a velocity of nearly -3000 km/s with respect to NGC 4874; we suggest it is on its first infall into the cluster core and is undergoing stripping of its GC system by the cluster potential.Comment: 24 pages, 20 figures, accepted for publication in Ap

    The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances

    Full text link
    We report data for II band Surface Brightness Fluctuation (SBF) magnitudes, V-I colors, and distance moduli for 300 galaxies. The Survey contains E, S0 and early-type spiral galaxies in the proportions of 49:42:9, and is essentially complete for E galaxies to Hubble velocities of 2000 km/s, with a substantial sampling of E galaxies out to 4000 km/s. The median error in distance modulus is 0.22 mag. We also present two new results from the Survey. (1) We compare the mean peculiar flow velocity (bulk flow) implied by our distances with predictions of typical cold dark matter transfer functions as a function of scale, and find very good agreement with cold, dark matter cosmologies if the transfer function scale parameter Γ\Gamma, and the power spectrum normalization σ8\sigma_8 are related by σ8Γ0.52±0.5\sigma_8 \Gamma^{-0.5} \approx 2\pm0.5. Derived directly from velocities, this result is independent of the distribution of galaxies or models for biasing. The modest bulk flow contradicts reports of large-scale, large-amplitude flows in the 200\sim200 Mpc diameter volume surrounding our Survey volume. (2) We present a distance-independent measure of absolute galaxy luminosity, \Nbar, and show how it correlates with galaxy properties such as color and velocity dispersion, demonstrating its utility for measuring galaxy distances through large and unknown extinction.Comment: Accepted for publication in ApJ (10 January 2001); 23 page

    The Principal Axis of the Virgo Cluster

    Get PDF
    Using accurate distances to individual Virgo cluster galaxies obtained by the method of Surface Brightness Fluctuations, we show that Virgo's brightest ellipticals have a remarkably collinear arrangement in three dimensions. This axis, which is inclined by 10 to 15 degrees from the line of sight, can be traced to even larger scales where it appears to join a filamentary bridge of galaxies connecting Virgo to the rich cluster Abell 1367. The orientations of individual Virgo ellipticals also show some tendency to be aligned with the cluster axis, as does the jet of the supergiant elliptical M87. These results suggest that the formation of the Virgo cluster, and its brightest member galaxies, have been driven by infall of material along the Virgo-A1367 filament.Comment: 8 pages, 4 figures, accepted for publication in ApJ Letter

    An Old Cluster in NGC 6822

    Get PDF
    We present spectroscopy of two clusters in the dwarf irregular galaxy NGC 6822. From these we deduce an age for Cluster VII of 11 Gyr and [Fe/H] = -1.95 +/- 0.15 dex. Cluster VII appears to be an analog of the metal-poor galactic globular clusters. Cluster VI is found to be much younger and more metal rich, with an age of approximately 2 Gyr. Its derived metallicity, [Fe/H], of approximately -1.0 dex is comparable to that of the gas seen today in NGC 6822. The existence of a metal-poor old cluster in NGC 6822 rules out models for the chemical evolution of this galaxy with significant prompt initial enhancement. We find that a star formation rate which is constant with time and is within a factor of two of the present star formation rate can reproduce the two points on the age-metallicity relationship for NGC 6822 over the past 10 Gyr defined by these two clusters.Comment: 8 pages; accepted for publication in A

    The Possible z=0.83 Precursors of z=0 M* Early-type Cluster Galaxies

    Full text link
    We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as measured from velocity dispersions and half-light radii with a scatter of 0.2 dex in the mass for early-type galaxies. When we restrict our sample of members to high stellar masses, > 1e11.1 Msun (M* in the Schechter mass function for cluster galaxies), we find that the fraction of early-type galaxies is 79 +/- 6% at z=0.83 and 87 +/- 6% at z=0.023 for the Coma cluster, consistent with no evolution. Previous work with luminosity-selected samples finds that the early-type fraction in rich clusters declines from =~80% at z=0 to =~60% at z=0.8. The observed evolution in the early-type fraction from luminosity-selected samples must predominately occur among sub-M* galaxies. As M* for field and group galaxies, especially late-types, is below M* for clusters galaxies, infall could explain most of the recent early-type fraction growth. Future surveys could determine the morphological distributions of lower mass systems which will confirm or refute this explanation.Comment: 5 pages in emulate ApJ format with three color figures. Accepted for publication in ApJ Letters, v642n2. Updated to correct grammatical and typographic errors found by the journa

    The Environment of M85 optical transient 2006-1: constraints on the progenitor age and mass

    Get PDF
    M85 optical transient 2006-1 (M85 OT 2006-1) is the most luminous member of the small family of V838 Mon-like objects, whose nature is still a mystery. This event took place in the Virgo cluster of galaxies and peaked at an absolute magnitude of I~-13. Here we present Hubble Space Telescope images of M85 OT 2006-1 and its environment, taken before and after the eruption, along with a spectrum of the host galaxy at the transient location. We find that the progenitor of M85 OT 2006-1 was not associated with any star forming region. The g and z-band absolute magnitudes of the progenitor were fainter than about -4 and -6 mag, respectively. Therefore, we can set a lower limit of ~50 Myr on the age of the youngest stars at the location of the progenitor that corresponds to a mass of <7 solar mass. Previously published line indices suggest that M85 has a mean stellar age of 1.6+/-0.3 Gyr. If this mean age is representative of the progenitor of M85 OT 2006-1, then we can further constrain its mass to be less than 2 solar mass. We compare the energetics and mass limit derived for the M85 OT 2006-1 progenitor with those expected from a simple model of violent stellar mergers. Combined with further modeling, these new clues may ultimately reveal the true nature of these puzzling events.Comment: 4 pages, accepted to Ap

    The Nascent Red Sequence at z~2

    Get PDF
    We present new constraints on the evolution of the early-type galaxy color-magnitude relation (CMR) based on deep near-infrared imaging of a galaxy protocluster at z=2.16 obtained using NICMOS on-board the Hubble Space Telescope. This field contains a spectroscopically confirmed space-overdensity of Lyman-alpha and H-alpha emitting galaxies which surrounds the powerful radio galaxy MRC 1138-262. Using these NICMOS data we identify a significant surface-overdensity (= 6.2x) of red J-H galaxies in the color-magnitude diagram (when compared with deep NICMOS imaging from the HDF-N and UDF). The optical-NIR colors of these prospective red-sequence galaxies indicate the presence of on-going dust-obscured star-formation or recently formed (<~ 1.5 Gyr)stellar populations in a majority of the red galaxies. We measure the slope and intrinsic scatter of the CMR for three different red galaxy samples selected by a wide color cut, and using photometric redshifts both with and without restrictions on rest-frame optical morphology. In all three cases both the rest-frame UBU-B slope and intrinsic color scatter are considerably higher than corresponding values for lower redshift galaxy clusters. These results suggest that while some relatively quiescent galaxies do exist in this protocluster both the majority of the galaxy population and hence the color-magnitude relation are still in the process of forming, as expected.Comment: 8 pages, 7 figures, accepted for publication in ApJ (to appear June 1, 2008, v679n2

    The ACS Virgo Cluster Survey III. Chandra and HST Observations of Low-Mass X-Ray Binaries and Globular Clusters in M87

    Full text link
    The ACIS instrument on board the Chandra X-ray Observatory has been used to carry out the first systematic study of low-mass X-ray binaries (LMXBs) in M87. We identify 174 X-ray point-sources, of which ~150 are likely LMXBs. This LMXB catalog is combined with deep F475W and F850LP images taken with ACS on HST to examine the connection between LMXBs and globular clusters in M87. Of the 1688 globular clusters in our catalog, f_X = 3.6 +- 0.5% contain a LMXB and we find that the metal-rich clusters are 3 +- 1 times more likely to harbor a LMXB than their metal-poor counterparts. In agreement with previous findings for other galaxies, we find that brighter, more metal-rich clusters are more likely to contain a LMXB. For the first time, however, we are able to demonstrate that the probability, p_X, that a given cluster will contain a LMXB depends sensitively on the dynamical properties of the host cluster. Specifically, we use the HST images to measure the half-light radius, concentration index and central density, \rho_0, for each globular, and define a parameter, \Gamma, which is related to the tidal capture and binary-neutron star exchange rate. Our preferred form for p_X is then p_X \propto \Gamma \rho_0^{-0.42\pm0.11} (Z/Z_{\odot})^{0.33\pm0.1}. We argue that if the form of p_X is determined by dynamical processes, then the observed metallicity dependence is a consequence of an increased number of neutron stars per unit mass in metal-rich globular clusters. Finally, we find no compelling evidence for a break in the luminosity distribution of resolved X-ray point sources. Instead, the LMXB luminosity function is well described by a power law with an upper cutoff at L_X ~ 10^39 erg/s. (abridged)Comment: 23 pages, 21 figures. Accepted for publication in ApJ. Also available at http://www.physics.rutgers.edu/~pcote/acs/publications.htm

    Early-type Galaxies at z ~ 1.3. II. Masses and Ages of Early-type Galaxies in Different Environments and Their Dependence on Stellar Population Model Assumptions

    Get PDF
    We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z ~ 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 μm; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M ≳ 10^(11) M_☉) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses
    corecore