1,574 research outputs found

    Lepton flavour violation in The Little Higgs model

    Get PDF
    Little Higgs models with T-parity have a new source of lepton flavour violation. In this paper we consider the anomalous magnetic moment of the muon \gmtwo and the lepton flavour violating decays \mutoeg and \tautomug in Little Higgs model with T-parity \cite{Goyal:2006vq}. Our results shows that present experimental constraints of \mutoeg is much more useful to constrain the new sources of flavour violation which are present in T-parity models.Comment: LaTeX file with 13 eps figures (included

    Electroweak and Flavour Structure of a Warped Extra Dimension with Custodial Protection

    Full text link
    We present the electroweak and flavour structure of a model with a warped extra dimension and the bulk gauge group SU(3) x SU(2)_L x SU(2)_R x P_LR x U(1)_X. The presence of SU(2)_R implies an unbroken custodial symmetry in the Higgs system allowing to eliminate large contributions to the T parameter, whereas the P_LR symmetry and the enlarged fermion representations provide a custodial symmetry for flavour diagonal and flavour changing couplings of the SM Z boson to left-handed down-type quarks. We diagonalise analytically the mass matrices of charged and neutral gauge bosons including the first KK modes. We present the mass matrices for quarks including heavy KK modes and discuss the neutral and charged currents involving light and heavy fields. We give the corresponding complete set of Feynman rules in the unitary gauge.Comment: 74 pages, 2 figures. clarifying comments and references added, version to be published in JHE

    The Impact of a 4th Generation on Mixing and CP Violation in the Charm System

    Full text link
    We study D0-D0 mixing in the presence of a fourth generation of quarks. In particular, we calculate the size of the allowed CP violation which is found at the observable level well beyond anything possible with CKM dynamics. We calculate the semileptonic asymmetry a_SL and the mixing induced CP asymmetry eta_fS_f which are correlated with each other. We also investigate the correlation of eta_fS_f with a number of prominent observables in other mesonic systems like epsilon'/epsilon, Br(K_L -> pi0 nu nu), Br(K+ -> pi+ nu nu), Br(B_s ->mu+ mu-), Br(B_d -> mu+ mu-) and finally S_psi phi in the B_s system. We identify a clear pattern of flavour and CP violation predicted by the SM4 model: While simultaneous large 4G effects in the K and D systems are possible, accompanying large NP effects in the B_d system are disfavoured. However this behaviour is not as pronounced as found for the LHT and RSc models. In contrast to this, sizeable CP violating effects in the B_s system are possible unless extreme effects in eta_fS_f are found, and Br(B_s ->mu+ mu-) can be strongly enhanced regardless of the situation in the D system. We find that, on the other hand, S_psi phi > 0.2 combined with the measured epsilon'/epsilon significantly diminishes 4G effects within the D system.Comment: 22 pages, 23 figures, v2 (references added

    Particle-Antiparticle Mixing, epsilon_K, Delta Gamma_q, A_SL^q, A_CP(B_d -> psi K_S), A_CP(B_s -> psi phi) and B -> X_{s,d} gamma in the Littlest Higgs Model with T-Parity

    Full text link
    We calculate a number of observables related to particle-antiparticle mixing in the Littlest Higgs model with T-parity (LHT). The resulting effective Hamiltonian for Delta F=2 transitions agrees with the one of Hubisz et al., but our phenomenological analysis goes far beyond the one of these authors. In particular, we point out that the presence of mirror fermions with new flavour and CP-violating interactions allows to remove the possible Standard Model (SM) discrepancy between the CP asymmetry S_{psi K_S} and large values of |V_ub| and to obtain for the mass difference Delta M_s < (Delta M_s)_SM as suggested by the recent result by the CDF collaboration. We also identify a scenario in which simultaneously significant enhancements of the CP asymmetries S_{phi psi} and A_SL^q relative to the SM are possible, while satisfying all existing constraints, in particular from the B -> X_s gamma decay and A_CP(B -> X_s gamma) that are presented in the LHT model here for the first time. In another scenario the second, non-SM, value for the angle gamma=-(109+-6) from tree level decays, although unlikely, can be made consistent with all existing data with the help of mirror fermions. We present a number of correlations between the observables in question and study the implications of our results for the mass spectrum and the weak mixing matrix of mirror fermions. In the most interesting scenarios, the latter one turns out to have a hierarchical structure that differs significantly from the CKM one.Comment: 51 pages, 20 figures, 1 table. Extended discussion of the phases in the new mixing matrix V_Hd, some references added or updated, conclusions unchanged. Final version published in JHE

    On CP Asymmetries in Two-, Three- and Four-Body D Decays

    Full text link
    Indirect and direct CP violations have been established in K_L and B_d decays. They have been found in two-body decay channels -- with the exception of K_L to pi^+ pi^- e^+ e^- transitions. Evidence for direct CP asymmetry has just appeared in LHCb data on A_{CP}(D^0 to K^+ K^-) - A_{CP}(D^0 to pi^+ pi^-) with 3.5 sigma significance. Manifestations of New Dynamics (ND) can appear in CP asymmetries just below experimental bounds. We discuss D^{\pm}_{(s)}, D^0/\bar D^0 and D_L/D_S transitions to 2-, 3- and 4-body final states with a comment on predictions for inclusive vs. exclusive CP asymmetries. In particular we discuss T asymmetries in D to h_1 h_2 l^+ l^- in analogy with K_L to pi^+ pi^- e^+ e^- transitions due to interference between M1, internal bremsstrahlung and possible E1 amplitudes. Such an effect depends on the strength of CP violation originating from the ND -- as discussed here for Little Higgs Models with T parity and non-minimal Higgs sectors -- but also in the interferences between these amplitudes even in the Standard Model (SM). More general lessons can be learnt for T asymmetries in non-leptonic D decays like D to h_1h_2 h_3 h_4. Such manifestations of ND can be tested at LHCb and other Super-Flavour Factories like the projects at KEK near Tokyo and at Tor Vergata/Frascati near Rome.Comment: 27 pages, 6 figures. Revised with current results from LHCb and HFAG and further interpretation

    Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system

    Get PDF
    For any given system the number and location of sensors can affect the closed-loop performance as well as the reliability of the system. Hence, one problem in control system design is the selection of the sensors in some optimum sense that considers both the system performance and reliability. Although some methods have been proposed that deal with some of the aforementioned aspects, in this work, a design framework dealing with both control and reliability aspects is presented. The proposed framework is able to identify the best sensor set for which optimum performance is achieved even under single or multiple sensor failures with minimum sensor redundancy. The proposed systematic framework combines linear quadratic Gaussian control, fault tolerant control and multiobjective optimisation. The efficacy of the proposed framework is shown via appropriate simulations on an electro-magnetic suspension system

    Waiting for Precise Measurements of K^+->pi^+ nu nu and K_L->pi^0 nu nu

    Full text link
    In view of future plans for accurate measurements of the theoretically clean branching ratios Br(K+ -> pi+ nu nu) and Br(KL -> pi0 nu nu), that should take place in the next decade, we collect the relevant formulae for quantities of interest and analyze their theoretical and parametric uncertainties. We point out that in addition to the angle beta in the unitarity triangle (UT) also the angle gamma can in principle be determined from these decays with respectable precision and emphasize in this context the importance of the recent NNLO QCD calculation of the charm contribution to K+ -> pi+ nu nu and of the improved estimate of the long distance contribution by means of chiral perturbation theory. In addition to known expressions we present several new ones that should allow transparent tests of the Standard Model (SM) and of its extensions. While our presentation is centered around the SM, we also discuss models with minimal flavour violation and scenarios with new complex phases in decay amplitudes and meson mixing. We give a brief review of existing results within specific extensions of the SM, in particular the Littlest Higgs Model with T-parity, Z' models, the MSSM and a model with one universal extra dimension. We derive a new "golden" relation between B and K systems that involves (beta,gamma) and Br(KL -> pi0 nu nu) and investigate the virtues of (R_t,beta), (R_b,gamma), (beta,gamma) and (etabar,gamma) strategies for the UT in the context of K -> pi nu nu decays with the goal of testing the SM and its extensions.Comment: 56 pages, 18 figures, Section on Long Distance Contributions, 2 Figures and few References added, Uses Rev Mod Phys Style; Includes new results of NNLO calculation as well as matrix elements, extended and modified sections on new physic

    Characterising New Physics Models by Effective Dimensionality of Parameter Space

    Full text link
    We show that the dimension of the geometric shape formed by the phenomenologically valid points inside a multi-dimensional parameter space can be used to characterise different new physics models and to define a quantitative measure for the distribution of the points. We explain a simple algorithm to determine the box-counting dimension from a given set of parameter points, and illustrate our method with examples from different models that have recently been studied with respect to precision flavour observables.Comment: 14 pages, 8 figure

    Conclusions from CDF Results on CP Violation in D^0 \to \pi^+\pi^-, K^+K^- and Future Tasks

    Full text link
    Within the Standard Model (SM) one predicts both direct and indirect CP violation in D^0 \to \pi^+\pi^-, K^+K^- transitions, although the effects are tiny: Indirect CP asymmetry cannot exceed O(10^{-4}), probably even O(10^{-5}); direct effects are estimated at not larger than 10^{-4}. At B factories direct and indirect asymmetries have been studied with /\tau_{D^0} ~ 1; no CP asymmetry was found with an upper bound of about 1%. CDF has shown intriguing data on CP violation in D^0 \to \pi^+\pi^- [K^+K^-] with /\tau_{D^0} ~ 2.4 [2.65]. Also, CDF has not seen any CP violation. For direct CP asymmetry, CDF has a sensitivity similar to the combination of the B factories, yet for indirect CP violation it yields a significantly smaller sensitivity of a_{cp}^{ind}=(-0.01 +- 0.06_{stat} +- 0.05_{syst})% due to it being based on longer decay times. New Physics models (NP) like Little Higgs Models with T-Parity (LHT) can produce an indirect CP asymmetry up to 1%; CDF's findings thus cover the upper range of realistic NP predictions ~ 0.1 - 1%. One hopes that LHCb and a Super-Flavour Factory will probe the lower range down to ~0.01%. Such non-ad-hoc NP like LHT cannot enhance direct CP violation significantly over the SM level in D^0 \to \pi^+\pi^-, K^+K^- and D^{\pm} \to \pi^{\pm}K^+K^- transitions, but others might well do so.Comment: 11 pages, 1 figure. V2 has minor corrections and corresponds to the published versio
    corecore