1,095 research outputs found
Integrable Multicomponent Perfect Fluid Multidimensional Cosmology II: Scalar Fields
We consider anisotropic cosmological models with an universe of dimension 4
or more, factorized into n>1 Ricci-flat spaces, containing an m-component
perfect fluid of m non-interacting homogeneous minimally coupled scalar fields
under special conditions. We describe the dynamics of the universe: It has a
Kasner-like behaviour near the singularity and isotropizes during the expansion
to infinity.
Some of the considered models are integrable, and classical as well as
quantum solutions are found. Some solutions produce inflation from "nothing".
There exist classical asymptotically anti-de Sitter wormholes, and quantum
wormholes with discrete spectrum.Comment: 28 pages, LaTeX, subm. to Gen. Rel. Gra
Cosmological solutions in multidimensional model with multiple exponential potential
A family of cosmological solutions with Ricci-flat spaces in the
theory with several scalar fields and multiple exponential potential is
obtained when coupling vectors in exponents obey certain relations. Two
subclasses of solutions with power-law and exponential behaviour of scale
factors are singled out. It is proved that power-law solutions may take place
only when coupling vectors are linearly independent and exponential dependence
occurs for linearly dependent set of coupling vectors. A subfamily of solutions
with accelerated expansion is singled out. A generalized isotropization
behaviours of certain classes of general solutions are found. In quantum case
exact solutions to Wheeler-DeWitt equation are obtained and special "ground
state" wave functions are considered.Comment: 22 pages, 1 figur
Stars in five dimensional Kaluza Klein gravity
In the five dimensional Kaluza Klein (KK) theory there is a well known class
of static and electromagnetic--free KK--equations characterized by a naked
singularity behavior, namely the Generalized Schwarzschild solution (GSS). We
present here a set of interior solutions of five dimensional KK--equations.
These equations have been numerically integrated to match the GSS in the
vacuum. The solutions are candidates to describe the possible interior perfect
fluid source of the exterior GSS metric and thus they can be models for stars
for static, neutral astrophysical objects in the ordinary (four dimensional)
spacetime.Comment: 15 pages, 8 figures. To be published in EPJ
Generalized uncertainty principle in Bianchi type I quantum cosmology
We study a quantum Bianchi type I model in which the dynamical variables of
the corresponding minisuperspace obey the generalized Heisenberg algebra. Such
a generalized uncertainty principle has its origin in the existence of a
minimal length suggested by quantum gravity and sting theory. We present
approximate analytical solutions to the corresponding Wheeler-DeWitt equation
in the limit where the scale factor of the universe is small and compare the
results with the standard commutative and noncommutative quantum cosmology.
Similarities and differences of these solutions are also discussed.Comment: 8 pages, 3 figures, to appear in PL
Stabilization of internal spaces in multidimensional cosmology
Effective 4-dimensional theories are investigated which were obtained under
dimensional reduction of multidimensional cosmological models with a minimal
coupled scalar field as matter source. Conditions for the internal space
stabilization are considered and the possibility for inflation in the external
space is discussed. The electroweak as well as the Planck fundamental scale
approaches are investigated and compared with each other. It is shown that
there exists a rescaling for the effective cosmological constant as well as for
gravitational exciton masses in the different approaches.Comment: 12 pages, LaTeX2e, to appear in Phys.Rev.D, note adde
Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology
We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological
model of Bianchi type I with a minimally coupled massive scalar field as
source by generalizing the calculation of Lukash and Schmidt [1]. Contrarily to
other approaches we allow strong anisotropy. Combining analytical and numerical
methods, we apply an adiabatic approximation for , and as new feature we
find a period-doubling bifurcation. This bifurcation takes place near the
cosmological quantum boundary, i.e., the boundary of the quasiclassical region
with oscillating -function where the WKB-approximation is good. The
numerical calculations suggest that such a notion of a ``cosmological quantum
boundary'' is well-defined, because sharply beyond that boundary, the
WKB-approximation is no more applicable at all. This result confirms the
adequateness of the introduction of a cosmological quantum boundary in quantum
cosmology.Comment: Latest update of the paper at
http://www.physik.fu-berlin.de/~mbach/publics.html#
Multidimensional cosmological models: cosmological and astrophysical implications and constraints
We investigate four-dimensional effective theories which are obtained by
dimensional reduction of multidimensional cosmological models with factorizable
geometry and consider the interaction between conformal excitations of the
internal space (geometrical moduli excitations) and Abelian gauge fields. It is
assumed that the internal space background can be stabilized by minima of an
effective potential. The conformal excitations over such a background have the
form of massive scalar fields (gravitational excitons) propagating in the
external spacetime. We discuss cosmological and astrophysical implications of
the interaction between gravexcitons and four-dimensional photons as well as
constraints arising on multidimensional models of the type considered in our
paper. In particular, we show that due to the experimental bounds on the
variation of the fine structure constant, gravexcitons should decay before
nucleosynthesis starts. For a successful nucleosynthesis the masses of the
decaying gravexcitons should be m>10^4 GeV. Furthermore, we discuss the
possible contribution of gravexcitons to UHECR. It is shown that, at energies
of about 10^{20}eV, the decay length of gravexcitons with masses m>10^4 GeV is
very small, but that for m <10^2 GeV it becomes much larger than the
Greisen-Zatsepin-Kuzmin cut-off distance. Finally, we investigate the
possibility for gravexciton-photon oscillations in strong magnetic fields of
astrophysical objects. The corresponding estimates indicate that even the high
magnetic field strengths of magnetars are not sufficient for an efficient and
copious production of gravexcitons.Comment: 16 pages, LaTeX2e, minor changes, improved references, to appear in
PR
Models of G time variations in diverse dimensions
A review of different cosmological models in diverse dimensions leading to a
relatively small time variation of the effective gravitational constant G is
presented. Among them: 4-dimensional general scalar-tensor model,
multidimensional vacuum model with two curved Einstein spaces, multidimensional
model with multicomponent anisotropic "perfect fluid", S-brane model with
scalar fields and two form field etc. It is shown that there exist different
possible ways of explanation of relatively small time variation of the
effective gravitational constant G compatible with present cosmological data
(e.g. acceleration): 4-dimensional scalar-tensor theories or multidimensional
cosmological models with different matter sources. The experimental bounds on
G-dot may be satisfied ether in some restricted interval or for all allowed
values of the synchronous time variable.Comment: 27 pages, Late
Recommended from our members
Mutations causing medullary cystic kidney disease type 1 (MCKD1) lie in a large VNTR in MUC1 missed by massively parallel sequencing
While genetic lesions responsible for some Mendelian disorders can be rapidly discovered through massively parallel sequencing (MPS) of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple Mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing, and de novo assembly, we found that each of six MCKD1 families harbors an equivalent, but apparently independently arising, mutation in sequence dramatically underrepresented in MPS data: the insertion of a single C in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5-5 kb), GC-rich (>80%), coding VNTR in the mucin 1 gene. The results provide a cautionary tale about the challenges in identifying genes responsible for Mendelian, let alone more complex, disorders through MPS
- …
