5,925 research outputs found
Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap
A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We
discuss the alignment algorithm and an experiment-independent implementation
including outlier rejection and treatment of weakly determined parameters.
Using this implementation, the algorithm has been applied to data recorded with
one CMS silicon tracker endcap. Results are compared to both photogrammetry
measurements and data obtained from a dedicated hardware alignment system, and
good agreement is observed.Comment: 11 pages, 8 figures. CMS NOTE-2010/00
J/Psi Suppression in Heavy Ion Collisions at the CERN SPS
We reexamine the production of J/Psi and other charmonium states for a
variety of target-projectile choices at the SPS. For this study we use a newly
constructed cascade code LUCIFER II, which yields acceptable descriptions of
both hard and soft processes, specifically Drell-Yan and hidden charm
production, and soft energy loss and meson production, at the SPS. Glauber
calculations of other authors are redone, and compared directly to the cascade
results. The modeling of the charmonium states differs from that of earlier
workers in its unified treatment of the hidden charm meson spectrum, which is
introduced from the outset as a set of coupled states. The result is a
description of the NA38 and NA50 data in terms of a conventional hadronic
picture. The apparently anomalous suppression found in the most massive Pb+Pb
system arises from three sources: destruction in the initial nucleon-nucleon
cascade, use of coupled channels to exploit the larger breakup in the less
bound Chi and Psi' states, and comover interaction in the final low energy
phase.Comment: 36 pages (15 figures
Leading particle effect, inelasticity and the connection between average multiplicities in {\bf } and {\bf } processes
The Regge-Mueller formalism is used to describe the inclusive spectrum of the
proton in collisions. From such a description the energy dependences of
both average inelasticity and leading proton multiplicity are calculated. These
quantities are then used to establish the connection between the average
charged particle multiplicities measured in {\bf } and {\bf } processes. The description obtained for the leading proton cross section
implies that Feynman scaling is strongly violated only at the extreme values of
, that is at the central region () and at the diffraction
region (), while it is approximately observed in the
intermediate region of the spectrum.Comment: 20 pages, 10 figures, to be published in Physical Review
Antiproton Production in 11.5 A GeV/c Au+Pb Nucleus-Nucleus Collisions
We present the first results from the E864 collaboration on the production of
antiprotons in 10% central 11.5 A GeV/c Au+Pb nucleus collisions at the
Brookhaven AGS. We report invariant multiplicities for antiproton production in
the kinematic region 1.4<y<2.2 and 50<p_T<300 MeV/c, and compare our data with
a first collision scaling model and previously published results from the E878
collaboration. The differences between the E864 and E878 antiproton
measurements and the implications for antihyperon production are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review
Letter
Centrality and dE_{T}/d\etadN_{ch}/d\eta$ in Heavy Ion Collisions at Mid-Rapidity
The PHENIX experiment at RHIC has measured transverse energy and charged
particle multiplicity at mid-rapidity in Au + Au collisions at
= 19.6, 130, 62.4 and 200 GeV as a function of centrality. The presented
results are compared to measurements from other RHIC experiments, and
experiments at lower energies. The dependence of
and per pair of participants is consistent with logarithmic
scaling for the most central events. The centrality dependence of
and is similar at all measured incident
energies. At RHIC energies the ratio of transverse energy per charged particle
was found independent of centrality and growing slowly with . A
survey of comparisons between the data and available theoretical models is also
presented.Comment: Proccedings of the Workshop: Focus on Multiplcity at Bari, Italy,
June 17-19,2004. To be submitted to the Jornal of Physics, "Conference
series". Includes: 20 Pages, 15 figures, 3 Tables, 80 Referencie
Charged-Particle Multiplicity in Proton-Proton Collisions
This article summarizes and critically reviews measurements of
charged-particle multiplicity distributions and pseudorapidity densities in
p+p(pbar) collisions between sqrt(s) = 23.6 GeV and sqrt(s) = 1.8 TeV. Related
theoretical concepts are briefly introduced. Moments of multiplicity
distributions are presented as a function of sqrt(s). Feynman scaling, KNO
scaling, as well as the description of multiplicity distributions with a single
negative binomial distribution and with combinations of two or more negative
binomial distributions are discussed. Moreover, similarities between the energy
dependence of charged-particle multiplicities in p+p(pbar) and e+e- collisions
are studied. Finally, various predictions for pseudorapidity densities, average
multiplicities in full phase space, and multiplicity distributions of charged
particles in p+p(pbar) collisions at the LHC energies of sqrt(s) = 7 TeV, 10
TeV, and 14 TeV are summarized and compared.Comment: Invited review for Journal of Physics G -- version 2: version after
referee's comment
Study of relativistic nuclear collisions at AGS energies from p+Be to Au+Au with hadronic cascade model
A hadronic cascade model based on resonances and strings is used to study
mass dependence of relativistic nuclear collisions from p+Be to Au+Au at AGS
energies (\sim 10\AGeV) systematically. Hadron transverse momentum and
rapidity distributions obtained with both cascade calculations and Glauber type
calculations are compared with experimental data to perform detailed discussion
about the importance of rescattering among hadrons. We find good agreement with
the experimental data without any change of model parameters with the cascade
model. It is found that rescattering is of importance both for the explanation
of high transverse momentum tail and for the multiplicity of produced
particles.Comment: 27 pages, 30 figure
- …
