511 research outputs found

    The Rarita-Schwinger spin-3/2 equation in a nonuniform, central potential

    Get PDF
    The equations of motion for a massive spin-3/2 Rarita-Schwinger field in a finite-range, central, Lorentz scalar potential are developed. It is shown that the resulting density may not be everywhere positive definite.Comment: 9 pages, RevTe

    Nucleon Sigma Term and In-medium Quark Condensate in the Modified Quark-Meson Coupling Model

    Full text link
    We evaluate the nucleon sigma term and in-medium quark condensate in the modified quark-meson coupling model which features a density-dependent bag constant. We obtain a nucleon sigma term consistent with its empirical value, which requires a significant reduction of the bag constant in the nuclear medium similar to those found in the previous works. The resulting in-medium quark condensate at low densities agrees well with the model independent linear order result. At higher densities, the magnitude of the in-medium quark condensate tends to increase, indicating no tendency toward chiral symmetry restoration.Comment: 9 pages, modified version to be publishe

    Light Front Nuclear Physics: Toy Models, Static Sources and Tilted Light Front Coordinates

    Full text link
    The principles behind the detailed results of a light-front mean field theory of finite nuclei are elucidated by deriving the nucleon mode equation using a simple general argument, based on the idea that a static source in equal time coordinates corresponds to a moving source in light front coordinates. This idea also allows us to solve several simple toy model examples: scalar field in a box, 1+1 dimensional bag model, three-dimensional harmonic oscillator and the Hulth\'en potential. The latter provide simplified versions of momentum distributions and form factors of relevance to experiments. In particular, the relativistic correction to the mean square radius of a nucleus is shown to be very small. Solving these simple examples suggests another more general approach-- the use of tilted light front coordinates. The simple examples are made even simpler.Comment: 19 pages, references adde

    The Rarita-Schwinger Particles Under de Influence of Strong Magnetic Fields

    Full text link
    In this work, we calculate the solutions of the Rarita-Schwinger equation with the inclusion of the eletromagnetic interaction. Our gauge and coupling prescription choices lead to Dirac-type solutions. One of the consequences of our results are the Landau level occupation of particles, quite different from the usual spin 1/2 particle system occupation numbers.Comment: 12 page

    Quark Coulomb Interactions and the Mass Difference of Mirror Nuclei

    Get PDF
    We study the Okamoto-Nolen-Schiffer (ONS) anomaly in the binding energy of mirror nuclei at high density by adding a single neutron or proton to a quark gluon plasma. In this high-density limit we find an anomaly equal to two-thirds of the Coulomb exchange energy of a proton. This effect is dominated by quark electromagnetic interactions---rather than by the up-down quark mass difference. At normal density we calculate the Coulomb energy of neutron matter using a string-flip quark model. We find a nonzero Coulomb energy because of the neutron's charged constituents. This effect could make a significant contribution to the ONS anomaly.Comment: 4 pages, 2 figs. sub. to Phys. Rev. Let

    Quark-meson coupling model for finite nuclei

    Full text link
    A Quark-Meson Coupling (QMC) model is extended to finite nuclei in the relativistic mean-field or Hartree approximation. The ultra-relativistic quarks are assumed to be bound in non-overlapping nucleon bags, and the interaction between nucleons arises from a coupling of vector and scalar meson fields to the quarks. We develop a perturbative scheme for treating the spatial nonuniformity of the meson fields over the volume of the nucleon as well as the nucleus. Results of calculations for spherical nuclei are given, based on a fit to the equilibrium properties of nuclear matter. Several possible extensions of the model are also considered.Comment: 33 pages REVTeX plus 2 postscript figure

    Light-Front Bethe-Salpeter Equation

    Get PDF
    A three-dimensional reduction of the two-particle Bethe-Salpeter equation is proposed. The proposed reduction is in the framework of light-front dynamics. It yields auxiliary quantities for the transition matrix and the bound state. The arising effective interaction can be perturbatively expanded according to the number of particles exchanged at a given light-front time. An example suggests that the convergence of the expansion is rapid. This result is particular for light-front dynamics. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary three-dimensional ones. The technical procedure is developed for a two-boson case; the idea for an extension to fermions is given. The technical procedure appears quite practicable, possibly allowing one to go beyond the ladder approximation for the solution of the Bethe-Salpeter equation. The relation between the three-dimensional light-front reduction of the field-theoretic Bethe-Salpeter equation and a corresponding quantum-mechanical description is discussed.Comment: 42 pages, 5 figure

    Light-Front Nuclear Physics: Mean Field Theory for Finite Nuclei

    Get PDF
    A light-front treatment for finite nuclei is developed from a relativistic effective Lagrangian (QHD1) involving nucleons, scalar mesons and vector mesons. We show that the necessary variational principle is a constrained one which fixes the expectation value of the total momentum operator P+P^+ to be the same as that for PP^-. This is the same as minimizing the sum of the total momentum operators: P+P+P^-+P^+. We obtain a new light-front version of the equation that defines the single nucleon modes. The solutions of this equation are approximately a non-trivial phase factor times certain solutions of the usual equal-time Dirac equation. The ground state wave function is treated as a meson-nucleon Fock state, and the meson fields are treated as expectation values of field operators in that ground state. The resulting equations for these expectation values are shown to be closely related to the usual meson field equations. A new numerical technique to solve the self-consistent field equations is introduced and applied to 16^{16}O and 40^{40}Ca. The computed binding energies are essentially the same as for the usual equal-time theory. The nucleon plus momentum distribution (probability for a nucleon to have a given value of p+p^+) is obtained, and peaks for values of p+p^+ about seventy percent of the nucleon mass. The mesonic component of the ground state wave function is used to determine the scalar and vector meson momentum distribution functions, with a result that the vector mesons carry about thirty percent of the nuclear plus-momentum. The vector meson momentum distribution becomes more concentrated at p+=0p^+=0 as AA increases.Comment: 36 pages, 2 figure

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal
    corecore