24,878 research outputs found

    Simple parametrization of neutrino mixing matrix

    Full text link
    We propose simple forms of neutrino mixing matrix in analogy with the Wolfenstein parametrization of quark mixing matrix, by adopting the smallest mixing angle θ13\theta_{13} as a measure of expansion parameters with the tribimaximal pattern as the base matrix. The triminimal parametrization technique is utilized to expand the mixing matrix under two schemes, i.e., the standard Chau-Keung (CK) scheme and the original Kobayashi-Maskawa (KM) scheme. The new parametrizations have their corresponding Wolfenstein-like parametrizations of quark mixing matrix, and therefore they share the same intriguing features of the Wolfenstein parametrization. The newly introduced expansion parameters for neutrinos are connected to the Wolfenstein parameters for quarks via the quark-lepton complementarity.Comment: 5 pages. Version for publication in PR

    Casimir experiments showing saturation effects

    Full text link
    We address several different Casimir experiments where theory and experiment disagree. First out is the classical Casimir force measurement between two metal half spaces; here both in the form of the torsion pendulum experiment by Lamoreaux and in the form of the Casimir pressure measurement between a gold sphere and a gold plate as performed by Decca et al.; theory predicts a large negative thermal correction, absent in the high precision experiments. The third experiment is the measurement of the Casimir force between a metal plate and a laser irradiated semiconductor membrane as performed by Chen et al.; the change in force with laser intensity is larger than predicted by theory. The fourth experiment is the measurement of the Casimir force between an atom and a wall in the form of the measurement by Obrecht et al. of the change in oscillation frequency of a 87 Rb Bose-Einstein condensate trapped to a fused silica wall; the change is smaller than predicted by theory. We show that saturation effects can explain the discrepancies between theory and experiment observed in all these cases.Comment: 10 pages, 11 figure

    An integrated source of broadband quadrature squeezed light

    Get PDF
    An integrated silicon nitride resonator is proposed as an ultra-compact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output squeezing spectrum for intra-cavity pump self-phase modulation. Subject to standard material loss and detection efficiencies, we find that the device holds promises for generating substantial quantum noise squeezing over a bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -7 dB squeezing is predicted for a pump power of only 50 mW.Comment: 23 pages, 12 figure

    Cache Placement in Fog-RANs: From Centralized to Distributed Algorithms

    Full text link
    To deal with the rapid growth of high-speed and/or ultra-low latency data traffic for massive mobile users, fog radio access networks (Fog-RANs) have emerged as a promising architecture for next-generation wireless networks. In Fog-RANs, the edge nodes and user terminals possess storage, computation and communication functionalities to various degrees, which provides high flexibility for network operation, i.e., from fully centralized to fully distributed operation. In this paper, we study the cache placement problem in Fog-RANs, by taking into account flexible physical-layer transmission schemes and diverse content preferences of different users. We develop both centralized and distributed transmission aware cache placement strategies to minimize users' average download delay subject to the storage capacity constraints. In the centralized mode, the cache placement problem is transformed into a matroid constrained submodular maximization problem, and an approximation algorithm is proposed to find a solution within a constant factor to the optimum. In the distributed mode, a belief propagation based distributed algorithm is proposed to provide a suboptimal solution, with iterative updates at each BS based on locally collected information. Simulation results show that by exploiting caching and cooperation gains, the proposed transmission aware caching algorithms can greatly reduce the users' average download delay.Comment: 13 pages, 10 figure

    Pair Distribution Function of One-dimensional "Hard Sphere" Fermi and Bose Systems

    Full text link
    The pair distributions of one-dimensional "hard sphere" fermion and boson systems are exactly evaluated by introducing gap variables.Comment: 4 page

    Large-Scale Convex Optimization for Ultra-Dense Cloud-RAN

    Full text link
    The heterogeneous cloud radio access network (Cloud-RAN) provides a revolutionary way to densify radio access networks. It enables centralized coordination and signal processing for efficient interference management and flexible network adaptation. Thus, it can resolve the main challenges for next-generation wireless networks, including higher energy efficiency and spectral efficiency, higher cost efficiency, scalable connectivity, and low latency. In this article, we shall provide an algorithmic thinking on the new design challenges for the dense heterogeneous Cloud-RAN based on convex optimization. As problem sizes scale up with the network size, we will demonstrate that it is critical to take unique structures of design problems and inherent characteristics of wireless channels into consideration, while convex optimization will serve as a powerful tool for such purposes. Network power minimization and channel state information acquisition will be used as two typical examples to demonstrate the effectiveness of convex optimization methods. We will then present a two-stage framework to solve general large-scale convex optimization problems, which is amenable to parallel implementation in the cloud data center.Comment: to appear in IEEE Wireless Commun. Mag., June 201
    corecore