1,624 research outputs found
Symmetric spaces of higher rank do not admit differentiable compactifications
Any nonpositively curved symmetric space admits a topological
compactification, namely the Hadamard compactification. For rank one spaces,
this topological compactification can be endowed with a differentiable
structure such that the action of the isometry group is differentiable.
Moreover, the restriction of the action on the boundary leads to a flat model
for some geometry (conformal, CR or quaternionic CR depending of the space).
One can ask whether such a differentiable compactification exists for higher
rank spaces, hopefully leading to some knew geometry to explore. In this paper
we answer negatively.Comment: 13 pages, to appear in Mathematische Annale
Normal families of functions and groups of pseudoconformal diffeomorphisms of quaternion and octonion variables
This paper is devoted to the specific class of pseudoconformal mappings of
quaternion and octonion variables. Normal families of functions are defined and
investigated. Four criteria of a family being normal are proven. Then groups of
pseudoconformal diffeomorphisms of quaternion and octonion manifolds are
investigated. It is proven, that they are finite dimensional Lie groups for
compact manifolds. Their examples are given. Many charactersitic features are
found in comparison with commutative geometry over or .Comment: 55 pages, 53 reference
Convolution-type derivatives, hitting-times of subordinators and time-changed -semigroups
In this paper we will take under consideration subordinators and their
inverse processes (hitting-times). We will present in general the governing
equations of such processes by means of convolution-type integro-differential
operators similar to the fractional derivatives. Furthermore we will discuss
the concept of time-changed -semigroup in case the time-change is
performed by means of the hitting-time of a subordinator. We will show that
such time-change give rise to bounded linear operators not preserving the
semigroup property and we will present their governing equations by using again
integro-differential operators. Such operators are non-local and therefore we
will investigate the presence of long-range dependence.Comment: Final version, Potential analysis, 201
Lieb-Thirring Bound for Schr\"odinger Operators with Bernstein Functions of the Laplacian
A Lieb-Thirring bound for Schr\"odinger operators with Bernstein functions of
the Laplacian is shown by functional integration techniques. Several specific
cases are discussed in detail.Comment: We revised the first versio
Weyl group multiple Dirichlet series constructed from quadratic characters
We construct multiple Dirichlet series in several complex variables whose
coefficients involve quadratic residue symbols. The series are shown to have an
analytic continuation and satisfy a certain group of functional equations.
These are the first examples of an infinite collection of unstable Weyl group
multiple Dirichlet series in greater than two variables.Comment: incorporated referee's comment
A dimensionally continued Poisson summation formula
We generalize the standard Poisson summation formula for lattices so that it
operates on the level of theta series, allowing us to introduce noninteger
dimension parameters (using the dimensionally continued Fourier transform).
When combined with one of the proofs of the Jacobi imaginary transformation of
theta functions that does not use the Poisson summation formula, our proof of
this generalized Poisson summation formula also provides a new proof of the
standard Poisson summation formula for dimensions greater than 2 (with
appropriate hypotheses on the function being summed). In general, our methods
work to establish the (Voronoi) summation formulae associated with functions
satisfying (modular) transformations of the Jacobi imaginary type by means of a
density argument (as opposed to the usual Mellin transform approach). In
particular, we construct a family of generalized theta series from Jacobi theta
functions from which these summation formulae can be obtained. This family
contains several families of modular forms, but is significantly more general
than any of them. Our result also relaxes several of the hypotheses in the
standard statements of these summation formulae. The density result we prove
for Gaussians in the Schwartz space may be of independent interest.Comment: 12 pages, version accepted by JFAA, with various additions and
improvement
Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions
This paper is aimed to show the essential role played by the theory of
quasi-analytic functions in the study of the determinacy of the moment problem
on finite and infinite-dimensional spaces. In particular, the quasi-analytic
criterion of self-adjointness of operators and their commutativity are crucial
to establish whether or not a measure is uniquely determined by its moments.
Our main goal is to point out that this is a common feature of the determinacy
question in both the finite and the infinite-dimensional moment problem, by
reviewing some of the most known determinacy results from this perspective. We
also collect some properties of independent interest concerning the
characterization of quasi-analytic classes associated to log-convex sequences.Comment: 28 pages, Stochastic and Infinite Dimensional Analysis, Chapter 9,
Trends in Mathematics, Birkh\"auser Basel, 201
Askey-Wilson Type Functions, With Bound States
The two linearly independent solutions of the three-term recurrence relation
of the associated Askey-Wilson polynomials, found by Ismail and Rahman in [22],
are slightly modified so as to make it transparent that these functions satisfy
a beautiful symmetry property. It essentially means that the geometric and the
spectral parameters are interchangeable in these functions. We call the
resulting functions the Askey-Wilson functions. Then, we show that by adding
bound states (with arbitrary weights) at specific points outside of the
continuous spectrum of some instances of the Askey-Wilson difference operator,
we can generate functions that satisfy a doubly infinite three-term recursion
relation and are also eigenfunctions of -difference operators of arbitrary
orders. Our result provides a discrete analogue of the solutions of the purely
differential version of the bispectral problem that were discovered in the
pioneering work [8] of Duistermaat and Gr\"unbaum.Comment: 42 pages, Section 3 moved to the end, minor correction
Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli
Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens
International education: a force for peace and cross-cultural understanding?
This paper discusses the notion that the international sojourn has the potential to transform sojourners into cultural mediators who carry the power to improve global relations. A year-long ethnographic study of the adjustment experiences of international postgraduate students in England revealed a universal early enthusiasm for cross-cultural contact that was matched by a widespread adoption of segregated patterns of interacting. The most common friendship networks were described by bonds with conationals, and yet all students attested to an increase in their cultural learning and mindfulness by the end of the sojourn. Nevertheless, intercultural competence was maximised only in those few students who pursued a multicultural strategy of interaction, leading the researcher to call on Higher Education Institutions to instigate policies to encourage lasting cross-cultural contact
- …
