173 research outputs found

    OCCURRENCE OF PSEUDOGLYCOSURIA IN PATIENTS TREATED WITH PENICILLIN

    Full text link

    HYPOGLYCEMIC ACTION OF NICOTINIC ACID

    Full text link

    Structure of the gene encoding the murine protein kinase CK2 beta subunit.

    No full text
    Udgivelsesdato: 1995-Sep-1The mouse protein kinase CK2 beta subunit gene (Csnk2b) is composed of seven exons contained within 7874 bp. The exon and intron lengths extend from 76 to 321 and 111 to 1272 bp, respectively. The lengths of the murine coding exons correspond exactly to the lengths of the exons in the human CK2 beta gene. Both genes contain a first untranslated exon. Also, the promoter regions from the human and murine CK2 beta gene share some common features, e.g., they contain neither a TATA nor a CAAT box, exon 1 is flanked by a cluster of CpG dinucleotides and recognition sequences for the HpaII restriction endonuclease, and several blocks of sequence in the 5' flanking region are conserved between mouse and human. Despite all of these common features, one of the most striking differences found concerns the human CK2 alpha subunit binding domain at position -170 to -239 of the human gene. This domain has no counterpart in the murine gene. Hence, regulation of transcription of the CK2 beta gene by the catalytic CK2 alpha subunit as was described by Robitzki et al. (J. Biol. Chem. 268: 5694-5703, 1993) for the human gene cannot be considered a general regulatory mechanism

    Fas-associated factor 1 interacts with protein kinase CK2 in vivo upon apoptosis induction

    No full text
    Udgivelsesdato: 2001-DecWe show here that in several different cell lines protein kinase CK2 and Fas-associated factor 1 (FAF1) exist together in a complex which is stable to high monovalent salt concentration. The CK2/FAF1 complex formation is significantly increased after induction of apoptosis with various DNA damaging agents. Interestingly this effect is only seen in cell lines with an embryonic origin and not when cells have entered a differentiated state. It is further shown that the CK2 specific phosphorylation sites in the FAF1 molecule, i.e. serines 289 and 291 influence this complex formation. Mutation of the CK2 phosphorylation sites in the FAF1 molecule to alanine leads to a 1.5 to 2.0-fold higher association between CK2 and FAF1. Since the CK2 activity did not increase concomitantly with the complex formation we conclude that the FAF1 becomes to the CK2 enzyme so that a normal enzyme catalysis does not take place anymore. Subcellular localization experiments involving CK2 subunits and FAF1 show a co-localization of both CK2 subunits and FAF1 in the peri-nuclear cytoplasm. The majority of CK2 subunits is found in the nucleus. FAF1 is also found in the nucleoli. The results obtained further support the view that protein kinase CK2 plays an important role in certain steps of apoptosis

    Extraribosomal function of the acidic ribosomal P1-protein YP1alpha from Saccharomyces cerevisiae.

    Full text link
    The yeast acidic ribosomal P-proteins YP1alpha, YP1beta, YP2alpha and YP2beta were studied for a possible transactivation potential beside their ribosomal function. The fusions of P-proteins with the GAL4 DNA-binding domain were assayed toward their transcriptional activity with the aid of reporter genes in yeast. Two of the P-proteins, YP1alpha and YP1beta, exhibited transactivation potential, however, only YP1alpha can be regarded as a potent transactivator. This protein was able to transactivate a reporter gene associated with two distinct promoter systems, GAL1 or CYC1. Additionally, truncated proteins of YP1alpha and YP1beta were analyzed. The N-terminal part of YP1alpha fused to GAL4-BD showed transactivation potential but the C-terminal part did not. Our results suggest a putative extraribosomal function for these ribosomal proteins which consequently may be classified as "moonlighting" proteins.</jats:p

    Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system.

    No full text
    Udgivelsesdato: 2000-Jul-1The surface acidic ribosomal proteins (P-proteins), together with ribosomal core protein P0 form a multimeric lateral protuberance on the 60 S ribosomal subunit. This structure, also called stalk, is important for efficient translational activity of the ribosome. In order to shed more light on the function of these proteins, we are the first to have precisely analyzed mutual interactions among human P-proteins, employing the two hybrid system. The human acidic ribosomal P-proteins, (P1 or P2,) were fused to the GAL4 binding domain (BD) as well as the activation domain (AD), and analyzed in yeast cells. It is concluded that the heterodimeric complex of the P1/P2 proteins is formed preferentially. Formation of homodimers (P1/P1 and P2/P2) can also be observed, though with much less efficiency. Regarding that, we propose to describe the double heterodimeric complex as a protein configuration which forms the 60 S ribosomal stalk: P0-(P1/P2)(2). Additionally, mutual interactions among human and yeast P-proteins were analyzed. Heterodimer formation could be observed between human P2 and yeast P1 proteins
    corecore