5,058 research outputs found

    Fomenko-Mischenko Theory, Hessenberg Varieties, and Polarizations

    Full text link
    The symmetric algebra g (denoted S(\g)) over a Lie algebra \g (frak g) has the structure of a Poisson algebra. Assume \g is complex semi-simple. Then results of Fomenko- Mischenko (translation of invariants) and A.Tarasev construct a polynomial subalgebra \cal H = \bf C[q_1,...,q_b] of S(\g) which is maximally Poisson commutative. Here b is the dimension of a Borel subalgebra of \g. Let G be the adjoint group of \g and let \ell = rank \g. Identify \g with its dual so that any G-orbit O in \g has the structure (KKS) of a symplectic manifold and S(\g) can be identified with the affine algebra of \g. An element x \in \g is strongly regular if \{(dq_i)_x\}, i=1,...,b, are linearly independent. Then the set \g^{sreg} of all strongly regular elements is Zariski open and dense in \g, and also \g^{sreg \subset \g^{reg} where \g^{reg} is the set of all regular elements in \g. A Hessenberg variety is the b-dimensional affine plane in \g, obtained by translating a Borel subalgebra by a suitable principal nilpotent element. This variety was introduced in [K2]. Defining Hess to be a particular Hessenberg variety, Tarasev has shown that Hess \subset \g^sreg. Let R be the set of all regular G-orbits in \g. Thus if O \in R, then O is a symplectic manifold of dim 2n where n= b-\ell. For any O\in R let O^{sreg} = \g^{sreg}\cap O. We show that O^{sreg} is Zariski open and dense in O so that O^{sreg} is again a symplectic manifold of dim 2n. For any O \in R let Hess (O) = Hess \cap O. We prove that Hess(O) is a Lagrangian submanifold of O^{sreg} and Hess =\sqcup_{O \in R} Hess(O). The main result here shows that there exists, simultaneously over all O \in R, an explicit polarization (i.e., a "fibration" by Lagrangian submanifolds) of O^{sreg} which makes O^{sreg} simulate, in some sense, the cotangent bundle of Hess(O).Comment: 36 pages, plain te

    The congruence kernel of an arithmetic lattice in a rank one algebraic group over a local field

    Full text link
    Let k be a global field and let k_v be the completion of k with respect to v, a non-archimedean place of k. Let \mathbf{G} be a connected, simply-connected algebraic group over k, which is absolutely almost simple of k_v-rank 1. Let G=\mathbf{G}(k_v). Let \Gamma be an arithmetic lattice in G and let C=C(\Gamma) be its congruence kernel. Lubotzky has shown that C is infinite, confirming an earlier conjecture of Serre. Here we provide complete solution of the congruence subgroup problem for \Gamm$ by determining the structure of C. It is shown that C is a free profinite product, one of whose factors is \hat{F}_{\omega}, the free profinite group on countably many generators. The most surprising conclusion from our results is that the structure of C depends only on the characteristic of k. The structure of C is already known for a number of special cases. Perhaps the most important of these is the (non-uniform) example \Gamma=SL_2(\mathcal{O}(S)), where \mathcal{O}(S) is the ring of S-integers in k, with S=\{v\}, which plays a central role in the theory of Drinfeld modules. The proof makes use of a decomposition theorem of Lubotzky, arising from the action of \Gamma on the Bruhat-Tits tree associated with G.Comment: 27 pages, 5 figures, to appear in J. Reine Angew. Mat

    Symmetric spaces of higher rank do not admit differentiable compactifications

    Get PDF
    Any nonpositively curved symmetric space admits a topological compactification, namely the Hadamard compactification. For rank one spaces, this topological compactification can be endowed with a differentiable structure such that the action of the isometry group is differentiable. Moreover, the restriction of the action on the boundary leads to a flat model for some geometry (conformal, CR or quaternionic CR depending of the space). One can ask whether such a differentiable compactification exists for higher rank spaces, hopefully leading to some knew geometry to explore. In this paper we answer negatively.Comment: 13 pages, to appear in Mathematische Annale

    Overlap properties of geometric expanders

    Get PDF
    The {\em overlap number} of a finite (d+1)(d+1)-uniform hypergraph HH is defined as the largest constant c(H)(0,1]c(H)\in (0,1] such that no matter how we map the vertices of HH into Rd\R^d, there is a point covered by at least a c(H)c(H)-fraction of the simplices induced by the images of its hyperedges. In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph expansion for higher dimensional simplicial complexes, it was asked whether or not there exists a sequence {Hn}n=1\{H_n\}_{n=1}^\infty of arbitrarily large (d+1)(d+1)-uniform hypergraphs with bounded degree, for which infn1c(Hn)>0\inf_{n\ge 1} c(H_n)>0. Using both random methods and explicit constructions, we answer this question positively by constructing infinite families of (d+1)(d+1)-uniform hypergraphs with bounded degree such that their overlap numbers are bounded from below by a positive constant c=c(d)c=c(d). We also show that, for every dd, the best value of the constant c=c(d)c=c(d) that can be achieved by such a construction is asymptotically equal to the limit of the overlap numbers of the complete (d+1)(d+1)-uniform hypergraphs with nn vertices, as nn\rightarrow\infty. For the proof of the latter statement, we establish the following geometric partitioning result of independent interest. For any dd and any ϵ>0\epsilon>0, there exists K=K(ϵ,d)d+1K=K(\epsilon,d)\ge d+1 satisfying the following condition. For any kKk\ge K, for any point qRdq \in \mathbb{R}^d and for any finite Borel measure μ\mu on Rd\mathbb{R}^d with respect to which every hyperplane has measure 00, there is a partition Rd=A1Ak\mathbb{R}^d=A_1 \cup \ldots \cup A_{k} into kk measurable parts of equal measure such that all but at most an ϵ\epsilon-fraction of the (d+1)(d+1)-tuples Ai1,,Aid+1A_{i_1},\ldots,A_{i_{d+1}} have the property that either all simplices with one vertex in each AijA_{i_j} contain qq or none of these simplices contain qq

    Arbitrarily large families of spaces of the same volume

    Full text link
    In any connected non-compact semi-simple Lie group without factors locally isomorphic to SL_2(R), there can be only finitely many lattices (up to isomorphism) of a given covolume. We show that there exist arbitrarily large families of pairwise non-isomorphic arithmetic lattices of the same covolume. We construct these lattices with the help of Bruhat-Tits theory, using Prasad's volume formula to control their covolumes.Comment: 9 pages. Syntax corrected; one reference adde

    On abstract commensurators of groups

    Full text link
    We prove that the abstract commensurator of a nonabelian free group, an infinite surface group, or more generally of a group that splits appropriately over a cyclic subgroup, is not finitely generated. This applies in particular to all torsion-free word-hyperbolic groups with infinite outer automorphism group and abelianization of rank at least 2. We also construct a finitely generated, torsion-free group which can be mapped onto Z and which has a finitely generated commensurator.Comment: 13 pages, no figur

    Análise genética do início do florescimento em feijoeiro pelo "Triple Test Cross".

    Get PDF
    objetivo deste trabalho foi detectar a presença de epistasia e estimar os componentes da variância genética para o caráter início do florescimento em populações de feijoeiro (Phaseolus vulgaris L.) oriundas de genitores de diferentes conjuntos gênicos (pools gênicos)

    Potencial de populações segregantes de feijoeiro oriundas de cruzamentos intra e inter conjuntos gênicos.

    Get PDF
    Esse trabalho teve como objetivo comparar o potencial de populações segregantes de feijoeiro oriundas do cruzamento de genitores de mesmo conjunto gênico e de conjuntos gênicos diferentes por meio de estimativas de alguns parâmetros genéticos e fenotípicos

    U-duality (sub-)groups and their topology

    Full text link
    We discuss some consequences of the fact that symmetry groups appearing in compactified (super-)gravity may be non-simply connected. The possibility to add fermions to a theory results in a simple criterion to decide whether a 3-dimensional coset sigma model can be interpreted as a dimensional reduction of a higher dimensional theory. Similar criteria exist for higher dimensional sigma models, though less decisive. Careful examination of the topology of symmetry groups rules out certain proposals for M-theory symmetries, which are not ruled out at the level of the algebra's. We conclude with an observation on the relation between the ``generalized holonomy'' proposal, and the actual symmetry groups resulting from E_10 and E_11 conjectures.Comment: LaTeX, 8 pages, 2 tables, 1 figure, uses IOP-style files. Contributed to the proceedings of the RTN-workshop ``The quantum structure of space-time and the geometrical nature of the fundamental interactions,'', Copenhagen, Denmark, september 200

    Componentes da variância genética no cruzamento de feijões andinos e mesoamericanos.

    Get PDF
    Quando os cruzamentos são viáveis, frequentemente a população obtida apresenta desempenho abaixo da média dos pais para produtividade de grãos. Entretanto a partir do cruzamento entre as linhagens ESAL 686 (Andina) e Carioca MG (Mesoamericana) foram obtidas linhagens com bom desempenho (BRUZI et al., 2007). Seria importante estimar os componentes da variância genética e fenotípica desse cruzamento a fim de verificar se a variabilidade obtida é diferente do que é normalmente observado em outros cruzamentos de feijoeiro do mesmo conjunto gênico.CONAFE
    corecore