1,520 research outputs found
Dust sublimation by GRBs and its implications
The prompt optical flash recently detected accompanying GRB990123 suggests
that, for at least some GRBs, gamma-ray emission is accompanied by prompt
optical-UV emission with luminosity L(1-7.5eV)=10^{49}(\Delta\Omega/4\pi)erg/s,
where \Delta\Omega is the solid angle into which gamma-ray and optical-UV
emission is beamed. Such an optical-UV flash can destroy dust in the beam by
sublimation out to an appreciable distance, approximately 10 pc, and may clear
the dust out of as much as 10^7(\Delta\Omega/4\pi)M_sun of molecular cloud
material on an apparent time scale of 10 seconds. Detection of time dependent
extinction on this time scale would therefore provide strong constraints on the
GRB source environment. Dust destruction implies that existing, or future,
observations of not-heavily-reddened fireballs are not inconsistent with GRBs
being associated with star forming regions. In this case, however, if gamma-ray
emission is highly beamed, the expanding fireball would become reddened on a 1
week time scale.
If the optical depth due to dust beyond approximately 8 pc from the GRB is
0.2<\tau_V<2, most of the UV flash energy is converted to infra-red, \lambda
\sim 1 micron, radiation with luminosity \sim 10^{41} erg/s extending over an
apparent duration of \sim 20(1+z)(\Delta\Omega/0.01) day. Dust infra-red
emission may already have been observed in GRB970228 and GRB980326, and may
possibly explain their unusual late time behavior.Comment: 16 pages, including 1 figure, submitted to Ap
Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism
Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses
Monte-Carlo simulations of thermal/nonthermal radiation from a neutron-star magnetospheric accretion shell
We discuss the space-and-time-dependent Monte Carlo code we have developed to
simulate the relativistic radiation output from compact astrophysical objects,
coupled to a Fokker-Planck code to determine the self-consistent lepton
populations. We have applied this code to model the emission from a magnetized
neutron star accretion shell near the Alfven radius, reprocessing the radiation
from the neutron sar surface. We explore the parameter space defined by the
accretion rate, stellar surface field and the level of wave turbulence in the
shell. Our results are relevant to the emission from atoll sources, soft-X-ray
transient X-ray binaries containing weakly magnetized neutron stars, and to
recently suggested models of accretion-powered emission from anomalous X-ray
pulsars.Comment: 24 pages, including 7 figures; uses epsf.sty. final version, accepted
for publication in ApJ. Extended introduction and discussio
Lamination And Microstructuring Technology for a Bio-Cell Multiwell array
Microtechnology becomes a versatile tool for biological and biomedical
applications. Microwells have been established long but remained
non-intelligent up to now. Merging new fabrication techniques and handling
concepts with microelectronics enables to realize intelligent microwells
suitable for future improved cancer treatment. The described technology depicts
the basis for the fabrication of a elecronically enhanced microwell. Thin
aluminium sheets are structured by laser micro machining and laminated
successively to obtain registration tolerances of the respective layers of
5..10\^Am. The microwells lasermachined into the laminate are with
50..80\^Am diameter, allowing to hold individual cells within the well.
The individual process steps are described and results on the microstructuring
are given.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
H_2 Absorption and Fluorescence for Gamma Ray Bursts in Molecular Clouds
If a gamma ray burst with strong UV emission occurs in a molecular cloud,
there will be observable consequences resulting from excitation of the
surrounding H2. The UV pulse from the GRB will pump H2 into
vibrationally-excited levels which produce strong absorption at wavelengths <
1650 A. As a result, both the prompt flash and later afterglow will exhibit
strong absorption shortward of 1650 A, with specific spectroscopic features.
Such a cutoff in the emission from GRB 980329 may already have been observed by
Fruchter et al.; if so, GRB 980329 was at redshift 3.0 < z < 4.4 . BVRI
photometry of GRB 990510 could also be explained by H2 absorption if GRB 990510
is at redshift 1.6 < z < 2.3. The fluorescence accompanying the UV pumping of
the H2 will result in UV emission from the GRB which can extend over days or
months, depending on parameters of the ambient medium and beaming of the GRB
flash. The 7.5-13.6 eV fluorescent luminosity is \sim 10^{41.7} erg/s for
standard estimates of the parameters of the GRB and the ambient medium.
Spectroscopy can distinguish this fluorescent emission from other possible
sources of transient optical emission, such as a supernova.Comment: 13 pages, including 4 figures. submitted to Ap.J.(Letters
Flash-Heating of Circumstellar Clouds by Gamma Ray Bursts
The blast-wave model for gamma-ray bursts (GRBs) has been called into
question by observations of spectra from GRBs that are harder than can be
produced through optically thin synchrotron emission. If GRBs originate from
the collapse of massive stars, then circumstellar clouds near burst sources
will be illuminated by intense gamma radiation, and the electrons in these
clouds will be rapidly scattered to energies as large as several hundred keV.
Low-energy photons that subsequently pass through the hot plasma will be
scattered to higher energies, hardening the intrisic spectrum. This effect
resolves the "line-of-death" objection to the synchrotron shock model.
Illuminated clouds near GRBs will form relativistic plasmas containing large
numbers of electron-positron pairs that can be detected within ~ 1-2 days of
the explosion before expanding and dissipating. Localized regions of pair
annihilation radiation in the Galaxy would reveal past GRB explosions.Comment: 9 pages, 1 figure, submitted to ApJ Letter
Exact scaling of pair production in the high-energy limit of heavy-ion collisions
The two-center Dirac equation for an electron in the external electromagnetic
field of two colliding heavy ions in the limit in which the ions are moving at
the speed of light is exactly solved and nonperturbative amplitudes for free
electron-positron pair production are obtained. We find the condition for the
applicability of this solution for large but finite collision energy, and use
it to explain recent experimental results. The observed scaling of positron
yields as the square of the projectile and target charges is a result of an
exact cancellation of a nonperturbative charge dependence and holds as well for
large coupling. Other observables would be sensitive to nonperturbative phases.Comment: 4 pages, Revtex, no figures, submitted to PR
Nature of Intra-night Optical Variability of BL Lacertae
We present the results of extensive multi-band intra-night optical monitoring
of BL Lacertae during 2010--2012. BL Lacertae was very active in this period
and showed intense variability in almost all wavelengths. We extensively
observed it for a total for 38 nights; on 26 of them observations were done
quasi-simultaneously in B, V, R and I bands (totaling 113 light curves), with
an average sampling interval of around 8 minutes. BL Lacertae showed
significant variations on hour-like timescales in a total of 19 nights in
different optical bands. We did not find any evidence for periodicities or
characteristic variability time-scales in the light curves.
The intranight variability amplitude is generally greater at higher
frequencies and decreases as the source flux increases.
We found spectral variations in BL Lacertae in the sense that the optical
spectrum becomes flatter as the flux increases but in several flaring states
deviates from the linear trend suggesting different jet components contributing
to the emission at different times.Comment: 12 Pages, 5 figures, 3 Tables, Accepted for Publication in MNRA
- …
