1,039 research outputs found
On the variable-charged black holes embedded into de Sitter space: Hawking's radiation
In this paper we study the Hawking evaporation of masses of variable-charged
Reissner-Nordstrom and Kerr-Newman, black holes embedded into the de Sitter
universe by considering the charge to be function of radial coordinate of the
spherically symmetric metric.Comment: LaTex, p. 2
Gauge Theory of Gravity Requires Massive Torsion Field
One of the greatest unsolved issues of the physics of this century is to find
a quantum field theory of gravity. According to a vast amount of literature
unification of quantum field theory and gravitation requires a gauge theory of
gravity which includes torsion and an associated spin field. Various models
including either massive or massless torsion fields have been suggested. We
present arguments for a massive torsion field, where the probable rest mass of
the corresponding spin three gauge boson is the Planck mass.Comment: 3 pages, Revte
Energy in Generic Higher Curvature Gravity Theories
We define and compute the energy of higher curvature gravity theories in
arbitrary dimensions. Generically, these theories admit constant curvature
vacua (even in the absence of an explicit cosmological constant), and
asymptotically constant curvature solutions with non-trivial energy properties.
For concreteness, we study quadratic curvature models in detail. Among them,
the one whose action is the square of the traceless Ricci tensor always has
zero energy, unlike conformal (Weyl) gravity. We also study the string-inspired
Einstein-Gauss-Bonnet model and show that both its flat and Anti-de-Sitter
vacua are stable.Comment: 18 pages, typos corrected, one footnote added, to appear in Phys.
Rev.
Brane Cosmology from Heterotic String Theory
We consider brane cosmologies within the context of five-dimensional actions
with O(a') higher curvature corrections. The actions are compatible with bulk
string amplitude calculations from heterotic string theory. We find wrapped
solutions that satisfy the field equations in an approximate but acceptable
manner given their complexity, where the internal four-dimensional scale factor
is naturally inflating, having an exponential De-Sitter form. The temporal
dependence of the metric components is non-trivial so that this metric cannot
be factored as in a conformally flat case. The effective Planck mass is finite
and the brane solutions localize four-dimensional gravity, while the
four-dimensional gravitational constant varies with time. The Hubble constant
can be freely specified through the initial value of the scalar field, to
conform with recent data.Comment: 15 pages, 3 figures, LaTeX, Accepted for Publication in IJT
Quantum Gravitational Bremsstrahlung, Massless versus Massive Gravity
The massive spin-2 quantum gauge theory previously developed is applied to
calculate gravitational bremsstrahlung. It is shown that this theory is unique
and free from defects. In particular, there is no strong coupling if the
graviton mass becomes small. The cross sections go over smoothly into the ones
of the massless theory in the limit of vanishing graviton mass. The massless
cross sections are calculated for the full tensor theory.Comment: 13 pages, 1 figur
Phase transitions in general gravity theories
Phase transitions between two competing vacua of a given theory are quite
common in physics. We discuss how to construct the space-time solutions that
allow the description of phase transitions between different branches (or
asymptotics) of a given higher curvature gravity theory at finite temperature.Comment: 4 pages, 1 figure, Contribution to the Conference Proceedings of the
Spanish Relativity Meeting in Portugal (ERE2012
Interaction of Hawking radiation with static sources outside a Schwarzschild black hole
We show that the response rate of (i) a static source interacting with
Hawking radiation of massless scalar field in Schwarzschild spacetime (with the
Unruh vacuum) and that of (ii) a uniformly accelerated source with the same
proper acceleration in Minkowski spacetime (with the Minkowski vacuum) are
equal. We show that this equality will not hold if the Unruh vacuum is replaced
by the Hartle-Hawking vacuum. It is verified that the source responds to the
Hawking radiation near the horizon as if it were at rest in a thermal bath in
Minkowski spacetime with the same temperature. It is also verified that the
response rate in the Hartle-Hawking vacuum approaches that in Minkowski
spacetime with the same temperature far away from the black hole. Finally, we
compare our results with others in the literature.Comment: 18 pages (REVTEX
Low-energy sector quantization of a massless scalar field outside a Reissner-Nordstrom black hole and static sources
We quantize the low-energy sector of a massless scalar field in the
Reissner-Nordstrom spacetime. This allows the analysis of processes involving
soft scalar particles occurring outside charged black holes. In particular, we
compute the response of a static scalar source interacting with Hawking
radiation using the Unruh (and the Hartle-Hawking) vacuum. This response is
compared with the one obtained when the source is uniformly accelerated in the
usual vacuum of the Minkowski spacetime with the same proper acceleration. We
show that both responses are in general different in opposition to the result
obtained when the Reissner-Nordstrom black hole is replaced by a Schwarzschild
one. The conceptual relevance of this result is commented.Comment: 12 pages (REVTEX), no figure
Quantum Cosmology for a Quadratic Theory of Gravity
For pure fourth order () quantum cosmology the
Wheeler-DeWitt equation is solved exactly for the closed homogeneous and
isotropic model. It is shown that by imposing as boundary condition that at the origin of the universe the wave functions behave as suggested by
Vilenkin.Comment: 13 pages, latex,no figure
Causal Structure of Vacuum Solutions to Conformal(Weyl) Gravity
Using Penrose diagrams the causal structure of the static spherically
symmetric vacuum solution to conformal (Weyl) gravity is investigated. A
striking aspect of the solution is an unexpected physical singularity at
caused by a linear term in the metric. We explain how to calculate the
deflection of light in coordinates where the metric is manifestly conformal to
flat i.e. in coordinates where light moves in straight lines.Comment: 18 pages, 2 figures, title and abstract changed, contents essentially
unaltered accepted for publication in General Relativity and Gravitatio
- …
