3,851 research outputs found

    Disruption of COX-2 and eNOS does not confer protection from cardiovascular failure in lipopolysaccharide-treated conscious mice and isolated vascular rings

    Get PDF
    It was hypothesized that a serial stimulation of vascular cyclooxygenase-2 (COX-2) with subsequent activation of endothelial nitric oxide synthase (eNOS) is responsible for decrease in blood pressure, cardiac performance, and vascular reactivity in endotoxemia caused by LPS. The hypothesis was tested in catheterized, conscious, freely moving, wild-type mice and mice (C57BL/6J background) with targeted deletion of COX-2 and eNOS that were given an intravenous LPS bolus (2 mg/kg, 055:B5). In vitro studies were performed on murine aorta rings. LPS caused a concomitant decrease in mean arterial blood pressure (MAP) and heart rate (HR) that was significant after 3 h and was sustained throughout the experiment (8 h). The LPS-induced changes in MAP and HR were not different from control in COX-2−/− and eNOS−/− mice. A prostacyclin receptor antagonist (BR5064) blocked the hypotensive effect of a prostacyclin agonist (beraprost), but did not attenuate the LPS-induced decrease in MAP and HR. LPS decreased eNOS and neuronal NOS mRNA abundances in several organs, while inducible NOS mRNA was enhanced. In aortic rings, LPS suppressed α1-adrenoceptor-mediated vascular tone. Inhibition of COX-2 activity (NS 398), disruption of COX-2, endothelium removal, or eNOS deletion (eNOS−/−) did not improve vascular reactivity after LPS, while the NO synthase blockers 1400W and NG-nitro-l-arginine methyl ester prevented loss of tone. COX-2 and eNOS activities are not necessary for LPS-induced decreases in blood pressure, heart rate, and vascular reactivity. Inducible NOS activity appears crucial. COX-2 and eNOS are not obvious therapeutic targets for cardiovascular rescue during gram-negative endotoxemic shock. </jats:p

    Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature

    Get PDF
    Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved in kidney function. It was hypothesized that human renal vascular excitation-contraction coupling involves different subtypes of channels. In human renal artery and dissected intrarenal blood vessels from nephrectomies, PCR analysis showed expression of L-type (Ca v 1.2), P/Q-type (Ca v 2.1), and T-type subtype (Ca v 3.1 and Ca v 3.2) voltage-gated calcium channels (Ca v s), and quantitative PCR showed highest expression of L-type channels in renal arteries and variable expression between patients of subtypes of calcium channels in intrarenal vessels. Immunohistochemical labeling of kidney sections revealed signals for Ca v 2.1 and Ca v 3.1 associated with smooth muscle cells of preglomerular and postglomerular vessels. In human intrarenal arteries, depolarization with potassium induced a contraction inhibited by the L-type antagonist nifedipine, EC 50 1.2×10 −8 mol/L. The T-type antagonist mibefradil inhibited the potassium-induced constriction with large variations between patients. Interestingly, the P/Q-type antagonist, ω-agatoxin IVA, inhibited significantly the contraction with 24% at 10 −9 mol/L. In conclusion L-, P/Q, and T-type channels are expressed in human renal blood vessels, and L- and P/Q-type channels are of functional importance for the depolarization-induced vasoconstriction. The contribution of P/Q-type channels to contraction in the human vasculature is a novel mechanism for the regulation of renal blood flow and suggests that clinical treatment with calcium blockers might affect vascular reactivity also through P/Q-type channel inhibition. </jats:p

    COX-2 disruption leads to increased central vasopressin stores and impaired urine concentrating ability in mice

    Get PDF
    It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2−/−, C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP mRNA and peptide level, AVP plasma concentration, and AVP-regulated renal transport protein abundances were measured. In male COX-2−/−, basal urine output and water intake were elevated while urine osmolality was decreased compared with WT. Water deprivation resulted in lower urine osmolality, higher plasma osmolality in COX-2−/− mice irrespective of gender. Hypothalamic AVP mRNA level increased and was unchanged between COX-2−/− and WT after WD. AVP peptide content was higher in COX-2−/− compared with WT. At baseline, plasma AVP concentration was elevated in conscious chronically catheterized COX-2−/− mice, but after WD plasma AVP was unchanged between COX-2−/− and WT mice (43 ± 11 vs. 70 ± 16 pg/ml). Renal V2 receptor abundance was downregulated in COX-2−/− mice. Medullary interstitial osmolality increased and did not differ between COX-2−/− and WT after WD. Aquaporin-2 (AQP2; cortex-outer medulla), AQP3 (all regions), and UT-A1 (inner medulla) protein abundances were elevated in COX-2−/− at baseline and further increased after WD. COX-2−/− mice had elevated plasma urea and creatinine and accumulation of small subcapsular glomeruli. In conclusion, hypothalamic COX-2 activity is not necessary for enhanced AVP expression and secretion in response to water deprivation. Renal medullary COX-2 activity negatively regulates AQP2 and -3. The urine concentrating defect in COX-2−/− is likely caused by developmental glomerular injury and not dysregulation of AVP or collecting duct aquaporins. </jats:p

    Natural Pig Plasma Immunoglobulins Have Anti-Bacterial Effects: Potential for Use as Feed Supplement for Treatment of Intestinal Infections in Pigs

    Get PDF
    There is an increasing demand for non-antibiotics solutions to control infectious disease in intensive pig production. Here, one such alternative, namely pig antibodies purified from slaughterhouse blood was investigated in order to elucidate its potential usability to control post-weaning diarrhoea (PWD), which is one of the top indications for antibiotics usage in the pig production. A very cost-efficient and rapid one-step expanded bed adsorption (EBA) chromatography procedure was used to purify pig immunoglobulin G from slaughterhouse pig plasma (more than 100 litres), resulting in >85% pure pig IgG (ppIgG). The ppIgG thus comprised natural pig immunoglobulins and was subsequently shown to contain activity towards four pig-relevant bacterial strains (three different types of Escherichia coli and one type of Salmonella enterica) but not towards a fish pathogen (Yersinia ruckeri), and was demonstrated to inhibit the binding of the four pig relevant bacteria to a pig intestinal cell line (IPEC-J2). Finally it was demonstrated in an in vivo weaning piglet model for intestinal colonization with an E. coli F4+ challenge strain that ppIgG given in the feed significantly reduced shedding of the challenge strain, reduced the proportion of the bacterial family Enterobacteriaceae, increased the proportion of families Enterococcoceae and Streptococcaceae and generally increased ileal microbiota diversity. Conclusively, our data support the idea that natural IgG directly purified from pig plasma and given as a feed supplement can be used in modern swine production as an efficient and cost-effective means for reducing both occurrence of PWD and antibiotics usage and with a potential for the prevention and treatment of other intestinal infectious diseases even if the causative agent might not be known

    Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean

    Get PDF
    International audienceComprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high-nutrient-low-chlorophyll waters. Similarly, an increase of Mn uptake under Fe-depleted conditions may have caused the highest depletion of Mn relative to P in the surface waters of the Weddell Gyre. In addition, a cellular Mn-transport channel of Cd was possibly activated in the Weddell Gyre, which in turn may have yielded depletion of both Mn and Cd in these surface waters

    Differential effect of T-type voltage-gated calcium channel disruption on renal plasma flow and glomerular filtration rate in vivo

    Get PDF
    Voltage-gated Ca2+ (Cav) channels play an essential role in the regulation of renal blood flow and glomerular filtration rate (GFR). Because T-type Cav channels are differentially expressed in pre- and postglomerular vessels, it was hypothesized that they impact renal blood flow and GFR differentially. The question was addressed with the use of two T-type Cav knockout (Cav3.1−/− and Cav3.2−/−) mouse strains. Continuous recordings of blood pressure and heart rate, para-aminohippurate clearance (renal plasma flow), and inulin clearance (GFR) were performed in conscious, chronically catheterized, wild-type (WT) and Cav3.1−/− and Cav3.2−/− mice. The contractility of afferent and efferent arterioles was determined in isolated perfused blood vessels. Efferent arterioles from Cav3.2−/− mice constricted significantly more in response to a depolarization compared with WT mice. GFR was increased in Cav3.2−/− mice with no significant changes in renal plasma flow, heart rate, and blood pressure. Cav3.1−/− mice had a higher renal plasma flow compared with WT mice, whereas GFR was indistinguishable from WT mice. No difference in the concentration response to K+ was observed in isolated afferent and efferent arterioles from Cav3.1−/− mice compared with WT mice. Heart rate was significantly lower in Cav3.1−/− mice compared with WT mice with no difference in blood pressure. T-type antagonists significantly inhibited the constriction of human intrarenal arteries in response to a small depolarization. In conclusion, Cav3.2 channels support dilatation of efferent arterioles and affect GFR, whereas Cav3.1 channels in vivo contribute to renal vascular resistance. It is suggested that endothelial and nerve localization of Cav3.2 and Cav3.1, respectively, may account for the observed effects. </jats:p

    Mice with targeted disruption of the acyl-CoA binding protein display attenuated urine concentrating ability and diminished renal aquaporin-3 abundance

    Get PDF
    The acyl-CoA binding protein (ACBP) is a small intracellular protein that specifically binds and transports medium to long chain acyl-CoA esters. Previous studies have shown that ACBP is ubiquitously expressed but found at particularly high levels in lipogenic cell types as well as in many epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium with the highest expression in the proximal convoluted tubules. To elucidate the role of ACBP in the renal epithelium, mice with targeted disruption of the ACBP gene (ACBP(-/-)) were used to study water and NaCl balance as well as urine concentrating ability in metabolic cages. Food intake and urinary excretion of Na(+) and K(+) did not differ between ACBP(-/-) and (+/+) mice. Water intake and diuresis were significantly higher at baseline in ACBP(-/-) mice compared to that of (+/+) mice. Subsequent to 20h water deprivation, ACBP(-/-) mice exhibited increased diuresis, reduced urine osmolality, elevated hematocrit and higher relative weight loss compared to (+/+) mice. There were no significant differences in plasma concentrations of renin, corticosterone and aldosterone between mice of the two genotypes. At baseline, renal medullary interstitial fluid osmolality was not different between genotypes. After water deprivation, renal medullary interstitial fluid osmolality rose significantly while osmolality and concentrations of Na(+), K(+) and urea did not differ between ACBP(-/-) and (+/+). Cyclic AMP excretion was similar. Renal aquaporin (AQP)-2 and -4 protein abundances did not differ between water-deprived ACBP (+/+) and (-/-) mice. AQP3 abundance was lower in water-deprived ACBP(-/-) mice than in (+/+) control animals. Thus, we conclude that ACBP is necessary for intact urine concentrating ability. Our data suggest that the deficiency in urine concentrating ability in the ACBP(-/-) may be caused by reduced AQP3 leading to impaired efflux over the basolateral membrane of the collecting duct

    Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes

    Get PDF
    A new method for the synthesis of peroxomonophosphate, based on the use of boron-doped diamond electrodes, is described. The amount of oxidant electrogenerated depends on the characteristics of the supporting media (pH and solute concentration) and on the operating conditions (temperature and current density). Results show that the pH, between values of 1 and 5, does not influence either the electrosynthesis of peroxomonophosphate or the chemical stability of the oxidant generated. Conversely, low temperatures are required during the electrosynthesis process to minimize the thermal decomposition of peroxomonophosphate and to guarantee significant oxidant concentration. In addition, a marked influence of both the current density and the initial substrate is observed. This observation can be explained in terms of the contribution of hydroxyl radicals in the oxidation mechanisms that occur on diamond surfaces. In the assays carried out below the water oxidation potential, the generation of hydroxyl radicals did not take place. In these cases, peroxomonophosphate generation occurs through a direct electron transfer and, therefore, at these low current densities lower concentrations are obtained. On the other hand, at higher potentials both direct and hydroxyl radical-mediated mechanisms contribute to the oxidant generation and the process is more efficient. In the same way, the contribution of hydroxyl radicals may also help to explain the significant influence of the substrate concentration. Thus, the coexistence of both phosphate and hydroxyl radicals is required to ensure the generation of significant amounts of peroxomonophosphoric acid

    Minimal model for beta relaxation in viscous liquids

    Get PDF
    Contrasts between beta relaxation in equilibrium viscous liquids and glasses are rationalized in terms of a double-well potential model with structure-dependent asymmetry, assuming structure is described by a single order parameter. The model is tested for tripropylene glycol where it accounts for the hysteresis of the dielectric beta loss peak frequency and magnitude during cooling and reheating through the glass transition.Comment: Phys. Rev. Lett. (in press
    corecore