473 research outputs found

    Plasma inflammatory cytokines and survival of pancreatic cancer patients.

    Get PDF
    OBJECTIVES: Inflammation and inflammatory conditions have been associated with pancreatic cancer risk and progression in a number of clinical, epidemiological, and animal model studies. The goal of the present study is to identify plasma markers of inflammation associated with survival of pancreatic cancer patients, and assess their joint contribution to patient outcome. METHODS: We measured circulating levels of four established markers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor receptor type II (sTNF-RII), and macrophage inhibitory cytokine-1 (MIC-1)) in 446 patients enrolled in an ongoing prospective clinic-based study. Hazard ratios (HRs) and 95% confidence intervals (CI) for death were estimated using multivariate Cox proportional hazards models. RESULTS: Overall mortality was significantly increased in patients in the top quartile of CRP (HR = 2.52, 95% CI: 1.82-3.49), IL-6 (HR = 2.78, 95% CI: 2.03-3.81), sTNF-RII (HR = 2.00, 95% CI: 1.46-2.72), and MIC-1 (HR = 2.53, 95% CI: 1.83-3.50), compared to those in the bottom quartile (P-trend CONCLUSION: Individual elevated plasma inflammatory cytokines are associated with significant and dramatic reductions in pancreatic cancer patient survival. Furthermore, we observed an independent combined effect of those cytokines on patient survival, suggesting that multiple inflammatory pathways are likely involved in PDAC progression. Future research efforts to target the inflammatory state using combination strategies in pancreatic cancer patients are warranted

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    PABPN1 gene therapy for oculopharyngeal muscular dystrophy

    Get PDF
    International audienceOculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant, late-onset muscle disorder characterized by ptosis, swallowing difficulties, proximal limb weakness and nuclear aggregates in skeletal muscles. OPMD is caused by a trinucleotide repeat expansion in the PABPN1 gene that results in an N-terminal expanded polyalanine tract in polyA-binding protein nuclear 1 (PABPN1). Here we show that the treatment of a mouse model of OPMD with an adeno-associated virus-based gene therapy combining complete knockdown of endogenous PABPN1 and its replacement by a wild-type PABPN1 substantially reduces the amount of insoluble aggregates, decreases muscle fibrosis, reverts muscle strength to the level of healthy muscles and normalizes the muscle transcriptome. The efficacy of the combined treatment is further confirmed in cells derived from OPMD patients. These results pave the way towards a gene replacement approach for OPMD treatment

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    RFC1 repeat expansions in downbeat nystagmus syndromes: frequency and phenotypic profile

    Get PDF
    Objectives: The cause of downbeat nystagmus (DBN) remains unknown in a substantial number of patients (“idiopathic”), although intronic GAA expansions in FGF14 have recently been shown to account for almost 50% of yet idiopathic cases. Here, we hypothesized that biallelic RFC1 expansions may also represent a recurrent cause of DBN syndrome. Methods: We genotyped the RFC1 repeat and performed in-depth phenotyping in 203 patients with DBN, including 65 patients with idiopathic DBN, 102 patients carrying an FGF14 GAA expansion, and 36 patients with presumed secondary DBN. Results: Biallelic RFC1 AAGGG expansions were identified in 15/65 patients with idiopathic DBN (23%). None of the 102 GAA-FGF14-positive patients, but 2/36 (6%) of patients with presumed secondary DBN carried biallelic RFC1 expansions. The DBN syndrome in RFC1-positive patients was characterized by additional cerebellar impairment in 100% (15/15), bilateral vestibulopathy (BVP) in 100% (15/15), and polyneuropathy in 80% (12/15) of cases. Compared to GAA-FGF14-positive and genetically unexplained patients, RFC1-positive patients had significantly more frequent neuropathic features on examination and BVP. Furthermore, vestibular function, as measured by the video head impulse test, was significantly more impaired in RFC1-positive patients. Discussion: Biallelic RFC1 expansions are a common monogenic cause of DBN syndrome

    Altered organization of the intermediate filament cytoskeleton and relocalization of proteostasis modulators in cells lacking the ataxia protein sacsin

    Get PDF
    This work was supported by BBSRC [BB/L02294X/1]; the CIHR Rare Disease Emerging Team grant, the Ataxia of Charlevoix-Saguenay Foundation; Muscular Dystrophy Canada and Barts and the London Charity [417/1699]. The LSM880 confocal used in these studies was purchased through a Barts and the London Charity grant MGU0293

    The FGF14 GAA repeat expansion in Greek patients with late-onset cerebellar ataxia and an overview of the SCA27B phenotype across populations

    Get PDF
    A pathogenic GAA repeat expansion in the first intron of the fibroblast growth factor 14 gene (FGF14) has been recently identified as the cause of spinocerebellar ataxia 27B (SCA27B). We herein screened 160 Greek index cases with late-onset cerebellar ataxia (LOCA) for FGF14 repeat expansions using a combination of long-range PCR and bidirectional repeat-primed PCRs. We identified 19 index cases (12%) carrying a pathogenic FGF14 GAA expansion, a diagnostic yield higher than that of previously screened repeat-expansion ataxias in Greek LOCA patients. The age at onset of SCA27B patients was 60.5 ± 12.3 years (range, 34–80). Episodic onset (37%), downbeat nystagmus (32%) and vertigo (26%) were significantly more frequent in FGF14 expansion-positive cases compared to expansion-negative cases. Beyond typical cerebellar signs, SCA27B patients often displayed hyperreflexia (47%) and reduced vibration sense in the lower extremities (42%). The frequency and phenotypic profile of SCA27B in Greek patients was similar to most other previously studied populations. We conclude that FGF14 GAA repeat expansions are the commonest known genetic cause of LOCA in the Greek population and recommend prioritizing testing for FGF14 expansions in the diagnostic algorithm of patients with LOCA

    Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning

    Get PDF
    The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors. View Full-TextThe APC was funded by IKERDATA, S.L. under grant 3/12/DP/2021/00102—Area 1: Development of innovative business projects, from Provincial Council of Vizcaya (BEAZ for the Creation of Innovative Business Innovative business ventures)
    corecore