9,641 research outputs found
Quantum Effective Action in Spacetimes with Branes and Boundaries
We construct quantum effective action in spacetime with branes/boundaries.
This construction is based on the reduction of the underlying Neumann type
boundary value problem for the propagator of the theory to that of the much
more manageable Dirichlet problem. In its turn, this reduction follows from the
recently suggested Neumann-Dirichlet duality which we extend beyond the tree
level approximation. In the one-loop approximation this duality suggests that
the functional determinant of the differential operator subject to Neumann
boundary conditions in the bulk factorizes into the product of its Dirichlet
counterpart and the functional determinant of a special operator on the brane
-- the inverse of the brane-to-brane propagator. As a byproduct of this
relation we suggest a new method for surface terms of the heat kernel
expansion. This method allows one to circumvent well-known difficulties in heat
kernel theory on manifolds with boundaries for a wide class of generalized
Neumann boundary conditions. In particular, we easily recover several lowest
order surface terms in the case of Robin and oblique boundary conditions. We
briefly discuss multi-loop applications of the suggested Dirichlet reduction
and the prospects of constructing the universal background field method for
systems with branes/boundaries, analogous to the Schwinger-DeWitt technique.Comment: LaTeX, 25 pages, final version, to appear in Phys. Rev.
Heat kernel asymptotics with mixed boundary conditions
We calculate the coefficient of the heat kernel asymptotics for an
operator of Laplace type with mixed boundary conditions on a general compact
manifold.Comment: 26 pages, LaTe
Diffeomorphism invariant eigenvalue problem for metric perturbations in a bounded region
We suggest a method of construction of general diffeomorphism invariant
boundary conditions for metric fluctuations. The case of dimensional
Euclidean disk is studied in detail. The eigenvalue problem for the Laplace
operator on metric perturbations is reduced to that on -dimensional vector,
tensor and scalar fields. Explicit form of the eigenfunctions of the Laplace
operator is derived. We also study restrictions on boundary conditions which
are imposed by hermiticity of the Laplace operator.Comment: LATeX file, no figures, no special macro
Further functional determinants
Functional determinants for the scalar Laplacian on spherical caps and
slices, flat balls, shells and generalised cylinders are evaluated in two,
three and four dimensions using conformal techniques. Both Dirichlet and Robin
boundary conditions are allowed for. Some effects of non-smooth boundaries are
discussed; in particular the 3-hemiball and the 3-hemishell are considered. The
edge and vertex contributions to the coefficient are examined.Comment: 25 p,JyTex,5 figs. on request
Effective action and heat kernel in a toy model of brane-induced gravity
We apply a recently suggested technique of the Neumann-Dirichlet reduction to
a toy model of brane-induced gravity for the calculation of its quantum
one-loop effective action. This model is represented by a massive scalar field
in the -dimensional flat bulk supplied with the -dimensional kinetic
term localized on a flat brane and mimicking the brane Einstein term of the
Dvali-Gabadadze-Porrati (DGP) model. We obtain the inverse mass expansion of
the effective action and its ultraviolet divergences which turn out to be
non-vanishing for both even and odd spacetime dimensionality . For the
massless case, which corresponds to a limit of the toy DGP model, we obtain the
Coleman-Weinberg type effective potential of the system. We also obtain the
proper time expansion of the heat kernel in this model associated with the
generalized Neumann boundary conditions containing second order tangential
derivatives. We show that in addition to the usual integer and half-integer
powers of the proper time this expansion exhibits, depending on the dimension
, either logarithmic terms or powers multiple of one quarter. This property
is considered in the context of strong ellipticity of the boundary value
problem, which can be violated when the Euclidean action of the theory is not
positive definite.Comment: LaTeX, 20 pages, new references added, typos correcte
Prolongations of Geometric Overdetermined Systems
We show that a wide class of geometrically defined overdetermined semilinear
partial differential equations may be explicitly prolonged to obtain closed
systems. As a consequence, in the case of linear equations we extract sharp
bounds on the dimension of the solution space.Comment: 22 pages. In the second version, a comparison with the classical
theory of prolongations was added. In this third version more details were
added concerning our construction and especially the use of Kostant's
computation of Lie algebra cohomolog
- …
