1,030 research outputs found
Irreversible quantum graphs
Irreversibility is introduced to quantum graphs by coupling the graphs to a
bath of harmonic oscillators. The interaction which is linear in the harmonic
oscillator amplitudes is localized at the vertices. It is shown that for
sufficiently strong coupling, the spectrum of the system admits a new continuum
mode which exists even if the graph is compact, and a {\it single} harmonic
oscillator is coupled to it. This mechanism is shown to imply that the quantum
dynamics is irreversible. Moreover, it demonstrates the surprising result that
irreversibility can be introduced by a "bath" which consists of a {\it single}
harmonic oscillator
On the Detectability of the Hydrogen 3-cm Fine Structure Line from the EoR
A soft ultraviolet radiation field, 10.2 eV < E <13.6 eV, that permeates
neutral intergalactic gas during the Epoch of Reionization (EoR) excites the 2p
(directly) and 2s (indirectly) states of atomic hydrogen. Because the 2s state
is metastable, the lifetime of atoms in this level is relatively long, which
may cause the 2s state to be overpopulated relative to the 2p state. It has
recently been proposed that for this reason, neutral intergalactic atomic
hydrogen gas may be detected in absorption in its 3-cm fine-structure line
(2s_1/2 -> 2p_3/2) against the Cosmic Microwave Background out to very high
redshifts. In particular, the optical depth in the fine-structure line through
neutral intergalactic gas surrounding bright quasars during the EoR may reach
tau~1e-5. The resulting surface brightness temperature of tens of micro K (in
absorption) may be detectable with existing radio telescopes. Motivated by this
exciting proposal, we perform a detailed analysis of the transfer of Lyman
beta,gamma,delta,... radiation, and re-analyze the detectability of the
fine-structure line in neutral intergalactic gas surrounding high-redshift
quasars. We find that proper radiative transfer modeling causes the
fine-structure absorption signature to be reduced tremendously to tau< 1e-10.
We therefore conclude that neutral intergalactic gas during the EoR cannot
reveal its presence in the 3-cm fine-structure line to existing radio
telescopes.Comment: 7 pages, 4 figures, MNRAS in press; v2. some typos fixe
Role of Present and Future Atomic Parity Violation Experiments in Precision Electroweak Tests
Recent reanalyses of the atomic physics effects on the weak charge in cesium
have led to a value in much closer agreement with predictions of the Standard
Model. We review precision electroweak tests, their implications for upper
bounds on the mass of the Higgs boson, possible ways in which these bounds may
be circumvented, and the requirements placed upon accuracy of future atomic
parity violation experiments by these considerations.Comment: 10 pages, LaTeX, 1 figure, to be submitted to Physical Review D, new
data on neutrino deep inelastic scattering include
Correlated many-body treatment of Breit interaction with application to cesium atomic properties and parity violation
Corrections from Breit interaction to basic properties of atomic 133Cs are
determined in the framework of third-order relativistic many-body perturbation
theory. The corrections to energies, hyperfine-structure constants,
off-diagonal hyperfine 6S-7S amplitude, and electric-dipole matrix elements are
tabulated. It is demonstrated that the Breit corrections to correlations are
comparable to the Breit corrections at the Dirac-Hartree-Fock level.
Modification of the parity-nonconserving (PNC) 6S-7S amplitude due to Breit
interaction is also evaluated; the resulting weak charge of Cs shows no
significant deviation from the prediction of the standard model of elementary
particles. The neutron skin correction to the PNC amplitude is also estimated
to be -0.2% with an error bound of 30% based on the analysis of recent
experiments with antiprotonic atoms. The present work supplements publication
[A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000)] with a discussion of the
formalism and provides additional numerical results and updated discussion of
parity violation.Comment: 16 pages; 5 figs; submitted to Phys. Rev.
Constructing Infinite Particle Spectra
We propose a general construction principle which allows to include an
infinite number of resonance states into a scattering matrix of hyperbolic
type. As a concrete realization of this mechanism we provide new S-matrices
generalizing a class of hyperbolic ones, which are related to a pair of simple
Lie algebras, to the elliptic case. For specific choices of the algebras we
propose elliptic generalizations of affine Toda field theories and the
homogeneous sine-Gordon models. For the generalization of the sinh-Gordon model
we compute explicitly renormalization group scaling functions by means of the
c-theorem and the thermodynamic Bethe ansatz. In particular we identify the
Virasoro central charges of the corresponding ultraviolet conformal field
theories.Comment: 7 pages Latex, 7 figures (typo in figure 3 corrected
NAHE-based string models with SU(4) X SU(2) X U(1) SO(10) Subgroup
The orbifold GUT doublet-triplet splitting mechanism was discussed in 1994 in
the framework of the NAHE-based free fermionic models in which the SO(10) GUT
symmetry is broken to SO(6) X SO(4), SU(3) X SU(2) X U(1)^2, or SU(3) X U(1) X
SU(2)^2. In this paper we study NAHE-based free fermionic models in which the
SO(10) symmetry is broken at the string level to SU(4) X SU(2) X U(1). In
addition to the doublet-triplet splitting this case also has the advantage of
inducing the doublet-doublet splitting already at the string level. We
demonstrate, however, that NAHE-based models with SU(4) X SU(2) X U(1) SO(10)
subgroup are not viable. We show that, similarly to the LRS models, and in
contrast to the FSU5, PS and SLM models, the SU421 case gives rise to models
without an anomalous U(1) symmetry, and discuss the different cases in terms of
their N=4 origins.Comment: 25 pages. Standard Latex. Revised version to appear in NP
Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line
Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain
The charmonium and bottomonium mass spectroscopy with a simple approximaton of the kinetic term
In this paper we propose a particular description of meson spectroscopy, with
emphasis in heavy bound states like charmonia and bottomonia, after working on
the main aspects of the construction of an effective potential model. We use
the prerogatives from ``soft QCD'' to determine the effective potential terms,
establishing the asymptotic Coulomb term from one gluon exchange approximation.
At the same time, a linear confinement term is introduced in agreement with QCD
and phenomenological prescription. The main aspect of this work is the
simplification in the calculation, consequence of a precise and simplified
description of the kinetic term of the Hamiltonian. With this proposition we
perform the calculations of mass spectroscopy for charmonium and bottomonium
mesons and we discuss the real physical possibilities of developing a
generalized potential model, its possible advantages relative to experimental
parameterization and complexity in numerical calculations
Structure of the Janus Protein Human CLIC2
Chloride intracellular channel (CLIC) proteins possess the remarkable property of being able to convert from a water-soluble state to a membrane channel state. We determined the three-dimensional structure of human CLIC2 in its water-soluble form by X-ray crystallography at 1.8-Å resolution from two crystal forms. In contrast to the previously characterized CLIC1 protein, which forms a possibly functionally important disulfide-induced dimer under oxidizing conditions, we show that CLIC2 possesses an intramolecular disulfide and that the protein remains monomeric irrespective of redox conditions. Site-directed mutagenesis studies show that removal of the intramolecular disulfide or introduction of cysteine residues in CLIC2, equivalent to those that form the intramolecular disulfide in CLIC1, does not cause dimer formation under oxidizing conditions.We also show that CLIC2 forms pH-dependent chloride channels in vitro with higher channel activity at low pH levels and that the channels are subject to redox regulation. In both crystal forms, we observed an extended loop region from the C-terminal domain, called the foot loop, inserting itself into an interdomain crevice of a neighboring molecule. The equivalent region in the structurally related glutathione transferase superfamily corresponds to the active site. This so-called foot-in-mouth interaction suggests that CLIC2 might recognize other proteins such as the ryanodine receptor through a similar interaction
Exact two-particle eigenstates in partially reduced QED
We consider a reformulation of QED in which covariant Green functions are
used to solve for the electromagnetic field in terms of the fermion fields. It
is shown that exact few-fermion eigenstates of the resulting Hamiltonian can be
obtained in the canonical equal-time formalism for the case where there are no
free photons. These eigenstates lead to two- and three-body Dirac-like
equations with electromagnetic interactions. Perturbative and some numerical
solutions of the two-body equations are presented for positronium and
muonium-like systems, for various strengths of the coupling.Comment: 33 pages, LaTex 2.09, 4 figures in EPS forma
- …
