1,751 research outputs found
Correlation Between Student Collaboration Network Centrality and Academic Performance
We compute nodal centrality measures on the collaboration networks of
students enrolled in three upper-division physics courses, usually taken
sequentially, at the Colorado School of Mines. These are complex networks in
which links between students indicate assistance with homework. The courses
included in the study are intermediate Classical Mechanics, introductory
Quantum Mechanics, and intermediate Electromagnetism. By correlating these
nodal centrality measures with students' scores on homework and exams, we find
four centrality measures that correlate significantly with students' homework
scores in all three courses: in-strength, out-strength, closeness centrality,
and harmonic centrality. These correlations suggest that students who not only
collaborate often, but also collaborate significantly with many different
people tend to achieve higher grades. Centrality measures between simultaneous
collaboration networks (analytical vs. numerical homework collaboration)
composed of the same students also correlate with each other, suggesting that
students' collaboration strategies remain relatively stable when presented with
homework assignments targeting different skills. Additionally, we correlate
centrality measures between collaboration networks from different courses and
find that the four centrality measures with the strongest relationship to
students' homework scores are also the most stable measures across networks
involving different courses. Correlations of centrality measures with exam
scores were generally smaller than the correlations with homework scores,
though this finding varied across courses.Comment: 10 pages, 4 figures, submitted to Phys. Rev. PE
Language difficulties in first year Science
A key goal of the study entitled ‘A cross-disciplinary approach to language support for first year students in the science disciplines’, funded by the Carrick Institute for Learning and Teaching in Higher Education, is to examine the role of language in the learning of science by first-year university students. The disciplines involved are Physics, Chemistry and Biology. This national project also aims to transfer active learning skills, which are widely used in language teaching, to the teaching of science in first year. The paper discusses the background to the study, reports on some of the preliminary results on the language difficulties faced by first year student cohorts in science from data collected in 2008, and describes the framework we have established for the organization and delivery of first year science courses to be implemented in semester one 2009
Integrating language learning practises in first year science disciplines
Student retention and progression rates are a matter of concern for most institutions in the higher education sector (Burton & Dowling, 2005;. Simpson, 2006;. Tinto & Pusser, 2006) in Australia. There is also a substantial body of literature concentrating on the first year experience at university (for example, in the Australian context, see Krause, Hartley, James, McInnis, & Centre for the Study of Higher Education. University of Melbourne, 2005). One of the particular concerns is that the diversity of the student body is rapidly increasing. Of course, with diversity comes with differentiated level of preparation for academic study within the student body
Embedding in-discipline language support for first year students in the sciences
This paper reports on a project which aims at addressing the need to cater for the language needs of a diverse student body (both domestic and international student body) by embedding strategic approaches to learning and teaching in first year sciences in tertiary education. These strategies consist of active learning skills which are widely used in language learning. The disciplines covered by the project are Biology, Chemistry and Physics and involves the University of Canberra (UC), University of Sydney (USyd), University of Tasmania (UTAS), University of Technology, Sydney (UTS) and University of Newcastle (Newcastle) in Australia. This project is funded by the Australian Learning and Teaching Council (ALTC). The paper discusses the background to the study and reports on results on the language difficulties faced by first year science student cohorts from data collected in 2008 as well as qualitative data was also collected on 2008 students’ attitudes towards online science learning. It will also report on the results on the implementation of the learning strategies at UTS and UTAS in Physics and Chemistry disciplines in 2009. Keywords: First year science teaching, role of language in science teaching, active learning skill
Recommended from our members
Biases in the perceived timing of perisaccadic perceptual and motor events
Subjects typically experience the temporal interval immediately following a saccade as longer than a comparable control interval. One explanation of this effect is that the brain antedates the perceptual onset of a saccade target to around the time of saccade initiation. This could explain the apparent continuity of visual perception across eye movements. Thisantedating account was tested in three experiments in which subjects made saccades of differing extents and then judged either the duration or the temporal order of key events. Postsaccadic stimuli underwent subjective temporal lengthening and had early perceived onsets. A temporally advanced awareness of saccade completion was also found, independently of antedating effects. These results provide convergent evidence supporting antedating and differentiating it from other temporal biases
Automatic correction of hand pointing in stereoscopic depth
In order to examine whether stereoscopic depth information could drive fast automatic correction of hand pointing, an experiment was designed in a 3D visual environment in which participants were asked to point to a target at different stereoscopic depths as quickly and accurately as possible within a limited time window (≤300 ms). The experiment consisted of two tasks: "depthGO" in which participants were asked to point to the new target position if the target jumped, and "depthSTOP" in which participants were instructed to abort their ongoing movements after the target jumped. The depth jump was designed to occur in 20% of the trials in both tasks. Results showed that fast automatic correction of hand movements could be driven by stereoscopic depth to occur in as early as 190 ms.This work was supported by the Grants from the National Natural Science Foundation of China (60970062 and 61173116) and the Doctoral Fund of Ministry of Education of China (20110072110014)
Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions
Parity-odd domains, corresponding to non-trivial topological solutions of the
QCD vacuum, might be created during relativistic heavy-ion collisions. These
domains are predicted to lead to charge separation of quarks along the orbital
momentum of the system created in non-central collisions. To study this effect,
we investigate a three particle mixed harmonics azimuthal correlator which is a
\P-even observable, but directly sensitive to the charge separation effect. We
report measurements of this observable using the STAR detector in Au+Au and
Cu+Cu collisions at =200 and 62~GeV. The results are presented
as a function of collision centrality, particle separation in rapidity, and
particle transverse momentum. A signal consistent with several of the
theoretical expectations is detected in all four data sets. We compare our
results to the predictions of existing event generators, and discuss in detail
possible contributions from other effects that are not related to parity
violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review
C
Identified high- spectra in Cu+Cu collisions at =200 GeV
We report new results on identified (anti)proton and charged pion spectra at
large transverse momenta (3<<10 GeV/c) from Cu+Cu collisions at
=200 GeV using the STAR detector at the Relativistic Heavy Ion
Collider (RHIC). This study explores the system size dependence of two novel
features observed at RHIC with heavy ions: the hadron suppression at
high- and the anomalous baryon to meson enhancement at intermediate
transverse momenta. Both phenomena could be attributed to the creation of a new
form of QCD matter. The results presented here bridge the system size gap
between the available pp and Au+Au data, and allow the detailed exploration for
the on-set of the novel features. Comparative analysis of all available 200 GeV
data indicates that the system size is a major factor determining both the
magnitude of the hadron spectra suppression at large transverse momenta and the
relative baryon to meson enhancement.Comment: Submitted to Phys. Rev. C, 9 pages, 5 figure
Inclusive pi^0, eta, and direct photon production at high transverse momentum in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV
We report a measurement of high-p_T inclusive pi^0, eta, and direct photon
production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0
gamma gamma were detected in the
Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic
Heavy Ion Collider. The eta -> gamma gamma decay was also observed and
constituted the first eta measurement by STAR. The first direct photon cross
section measurement by STAR is also presented, the signal was extracted
statistically by subtracting the pi^0, eta, and omega(782) decay background
from the inclusive photon distribution observed in the calorimeter. The
analysis is described in detail, and the results are found to be in good
agreement with earlier measurements and with next-to-leading order perturbative
QCD calculations.Comment: 28 pages, 30 figures, 6 tables, the updated version that was accepted
by Phys. Rev.
- …
