7,443 research outputs found
Elementary solution to the time-independent quantum navigation problem
A quantum navigation problem concerns the identification of a time-optimal Hamiltonian that realizes a required quantum process or task, under the influence of a prevailing ‘background’ Hamiltonian that cannot be manipulated. When the task is to transform one quantum state into another, finding the solution in closed form to the problem is nontrivial even in the case of timeindependent Hamiltonians. An elementary solution, based on trigonometric analysis, is found here when the Hilbert space dimension is two. Difficulties arising from generalizations to higher-dimensional systems are discussed
Entropy and Temperature of a Quantum Carnot Engine
It is possible to extract work from a quantum-mechanical system whose
dynamics is governed by a time-dependent cyclic Hamiltonian. An energy bath is
required to operate such a quantum engine in place of the heat bath used to run
a conventional classical thermodynamic heat engine. The effect of the energy
bath is to maintain the expectation value of the system Hamiltonian during an
isoenergetic expansion. It is shown that the existence of such a bath leads to
equilibrium quantum states that maximise the von Neumann entropy. Quantum
analogues of certain thermodynamic relations are obtained that allow one to
define the temperature of the energy bath.Comment: 4 pages, 1 figur
Bures Metrics for Certain High-Dimensional Quantum Systems
Hubner's formula for the Bures (statistical distance) metric is applied to
both a one-parameter and a two-parameter series (n=2,...,7) of sets of 2^n x
2^n density matrices. In the doubly-parameterized series, the sets are
comprised of the n-fold tensor products --- corresponding to n independent,
identical quantum systems --- of the 2 x 2 density matrices with real entries.
The Gaussian curvatures of the corresponding Bures metrics are found to be
constants (4/n). In the second series of 2^n x 2^n density matrices studied,
the singly-parameterized sets are formed --- following a study of Krattenthaler
and Slater --- by averaging with respect to a certain Gibbs distribution, the
n-fold tensor products of the 2 x 2 density matrices with complex entries. For
n = 100, we are also able to compute the Bures distance between two arbitrary
(not necessarily neighboring) density matrices in this particular series,
making use of the eigenvalue formulas of Krattenthaler and Slater, together
with the knowledge that the 2^n x 2^n density matrices in this series commute.Comment: 8 pages, LaTeX, 4 postscript figures, minor changes, to appear in
Physics Letters
Progress Towards Modeling the Ablation Response of NuSil-Coated PICA
The Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation (MEDLI) collected in-flight data largely used by the ablation community to verify and validate physics-based models for the response of the Phenolic Impregnated Carbon Ablator (PICA) material [1-4]. MEDLI data were recently used to guide the development of NASAs high-fidelity material response models for PICA, implemented in the Porous material Analysis Toolbox based on OpenFOAM (PATO) software [5-6]. A follow-up instrumentation suite, MEDLI2, is planned for the upcoming Mars 2020 mission [7] after the large scientific impact of MEDLI. Recent analyses performed as part of MEDLI2 development draw the attention to significant effects of a protective coating to the aerothermal response of PICA. NuSil, a silicone-based overcoat sprayed onto the MSL heatshield as contamination control, is currently neglected in PICA ablation models. To mitigate the spread of phenolic dust from PICA, NuSil was applied to the entire MSL heatshield, including the MEDLI plugs. NuSil is a space grade designation of the siloxane copolymer, primarily used to protect against atomic oxygen erosion in the Low Earth Orbit environment. Ground testing of PICA-NuSil (PICA-N) models all exhibited surface temperature jumps of the order of 200 K due to oxide scale formation and subsequent NuSil burn-off. It is therefore critical to include a model for the aerothermal response of the coating in ongoing code development and validation efforts
Automated System for Early Breast Cancer Detection in Mammograms
The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed
Intruder States and their Local Effect on Spectral Statistics
The effect on spectral statistics and on the revival probability of intruder
states in a random background is analysed numerically and with perturbative
methods. For random coupling the intruder does not affect the GOE spectral
statistics of the background significantly, while a constant coupling causes
very strong correlations at short range with a fourth power dependence of the
spectral two-point function at the origin.The revival probability is
significantly depressed for constant coupling as compared to random coupling.Comment: 18 pages, 10 Postscript figure
- …
