356 research outputs found

    Computational identification of signalling pathways in Plasmodium falciparum

    Get PDF
    Malaria is one of the world’s most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design against merozoites invasion. And we have a host of other predicted pathways, some of which have been used in this work to predict the functionality of some proteins

    In Silico Gene Regulatory Network of the Maurer’s Cleft Pathway in Plasmodium falciparum

    Get PDF
    The Maurer’s clefts (MCs) are very important for the survival of Plasmodium falciparum within an infected cell as they are induced by the parasite itself in the erythrocyte for protein trafficking. The MCs form an interesting part of the parasite’s biology as they shed more light on how the parasite remodels the erythrocyte leading to host pathogenesis and death. Here, we predicted and analyzed the genetic regulatory network of genes identified to belong to the MCs using regularized graphical Gaussian model. Our network shows four major activators, their corresponding target genes, and predicted binding sites. One of these master activators is the serine repeat antigen 5 (SERA5), predominantly expressed among the SERA multigene family of P. falciparum, which is one of the blood-stage malaria vaccine candidates. Our results provide more details about functional interactions and the regulation of the genes in the MCs’ pathway of P. falciparum

    In Silico Gene Regulatory Network of the Maurer’s Cleft Pathway in Plasmodium falciparum

    Get PDF
    The Maurer’s clefts (MCs) are very important for the survival of Plasmodium falciparum within an infected cell as they are induced by the parasite itself in the erythrocyte for protein trafficking. The MCs form an interesting part of the parasite’s biology as they shed more light on how the parasite remodels the erythrocyte leading to host pathogenesis and death. Here, we predicted and analyzed the genetic regulatory network of genes identified to belong to the MCs using regularized graphical Gaussian model. Our network shows four major activators, their corresponding target genes, and predicted binding sites. One of these master activators is the serine repeat antigen 5 (SERA5), predominantly expressed among the SERA multigene family of P. falciparum, which is one of the blood-stage malaria vaccine candidates. Our results provide more details about functional interactions and the regulation of the genes in the MCs’ pathway of P. falciparum

    The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery

    Get PDF
    The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalog of high-resolution reference epigenomes of major primary human cell types. The studies now presented (see the Cell Press IHEC web portal at http://www.cell.com/consortium/IHEC) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic datasets to gain insights in the epigenetic control of cell states relevant for human health and disease

    Ensemble based Clustering of Plasmodium falciparum genes

    Get PDF
    Ensemble learning is a recent and extended approach to the unsupervised data mining technique called clustering which is used from finding natunl gmupings that exist in a dataset. Hetre, we applied an ensemble based clustering algol'ithm called Random Fot·ests with Pat·tition amund Medoids (PAM) to multiple time sel'ies gene expt·ession data of Plasmodium falcipat·um. The Random Fot·est algol'ithm is most common ensemble leat·ning appmach that uses decision tt·ees. Random Fm·est consists of lat·ge numbet· of classification tt·ees (nnging fmm hundt·eds to thousands) built from rabootstnp sampling of the dataset. We also applied the following intemal clustet· validity measures; Silhouette Width index, Connectivity Index and the Dunn Index to select the optimal numbet· of final clustet·s. Om· t·esults show that ensemble based clustering is indeed a good altet·native fm· clustet· analysis with the premise of an improved performance ovet· traditional clustering algorithm

    In Silico Gene Regulatory Network of the Maurer’s Cleft Pathway in Plasmodium falciparum

    Get PDF
    The Maurer’s clefts (MCs) are very important for the survival of Plasmodium falciparum within an infected cell as they are induced by the parasite itself in the erythrocyte for protein trafficking. The MCs form an interesting part of the parasite’s biology as they shed more light on how the parasite remodels the erythrocyte leading to host pathogenesis and death. Here, we predicted and analyzed the genetic regulatory network of genes identified to belong to the MCs using regularized graphical Gaussian model. Our network shows four major activators, their corresponding target genes, and predicted binding sites. One of these master activators is the serine repeat antigen 5 (SERA5), predominantly expressed among the SERA multigene family of P. falciparum, which is one of the blood-stage malaria vaccine candidates. Our results provide more details about functional interactions and the regulation of the genes in the MCs’ pathway of P. falciparum

    Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer

    No full text
    Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA

    Computational identification of signalling pathways in Plasmodium falciparum

    Get PDF
    Malaria is one of the world’s most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design against merozoites invasion. And we have a host of other predicted pathways, some of which have been used in this work to predict the functionality of some proteins

    Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma

    Get PDF
    Neuroblastoma is an embryonal malignancy of the sympathetic nervous system. Spontaneous regression and differentiation of neuroblastoma is observed in a subset of patients, and has been suggested to represent delayed activation of physiologic molecular programs of fetal neuroblasts. Homeobox genes constitute an important family of transcription factors, which play a fundamental role in morphogenesis and cell differentiation during embryogenesis. In this study, we demonstrate that expression of the majority of the human HOX class I homeobox genes is significantly associated with clinical covariates in neuroblastoma using microarray expression data of 649 primary tumors. Moreover, a HOX gene expression-based classifier predicted neuroblastoma patient outcome independently of age, stage and MYCN amplification status. Among all HOX genes, HOXC9 expression was most prominently associated with favorable prognostic markers. Most notably, elevated HOXC9 expression was significantly associated with spontaneous regression in infant neuroblastoma. Re-expression of HOXC9 in three neuroblastoma cell lines led to a significant reduction in cell viability, and abrogated tumor growth almost completely in neuroblastoma xenografts. Neuroblastoma growth arrest was related to the induction of programmed cell death, as indicated by an increase in the sub-G1 fraction and translocation of phosphatidylserine to the outer membrane. Programmed cell death was associated with the release of cytochrome c from the mitochondria into the cytosol and activation of the intrinsic cascade of caspases, indicating that HOXC9 re-expression triggers the intrinsic apoptotic pathway. Collectively, our results show a strong prognostic impact of HOX gene expression in neuroblastoma, and may point towards a role of Hox-C9 in neuroblastoma spontaneous regression

    Homology Modelling and Molecular Docking Studies of Selected Substituted Benzo[d]imidazol-1-yl)methyl) benzimidamide Scaffolds on Plasmodium falciparum Adenylosuccinate Lyase Receptor

    Get PDF
    Plasmodium falciparum adenylosuccinate lyase (PfADSL) is an important enzyme in purine metabolism. Although several benzimidazole derivatives have been commercially developed into drugs, the template design as inhibitor against PfADSL has not been fully explored. This study aims to model the 3-dimensional (3D) structure of PfADSL, design and predict in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) of 8 substituted benzo[d]imidazol-1-yl)methyl)benzimidamide compounds as well as predict the potential interaction modes and binding affinities of the designed ligands with the modelled PfADSL. PfADSL 3D structure was modelled using SWISS-MODEL, whereas the compounds were designed using ChemDraw Professional. ADMET predictions were done using OSIRIS Property Explorer and Swiss ADME, whereas molecular docking was done with AutoDock Tools. All designed compounds exhibited good in silico ADMET properties, hence can be considered safe for drug development. Binding energies ranged from −6.85 to −8.75 kcal/mol. Thus, they could be further synthesised and developed into active commercial antimalarial drugs
    corecore