2,261 research outputs found
Evidence of Raleigh-Hertz surface waves and shear stiffness anomaly in granular media
Due to the non-linearity of Hertzian contacts, the speed of sound in granular
matter increases with pressure. Under gravity, the non-linear elastic
description predicts that acoustic propagation is only possible through surface
modes, called Rayleigh-Hertz modes and guided by the index gradient. Here we
directly evidence these modes in a controlled laboratory experiment and use
them to probe the elastic properties of a granular packing under vanishing
confining pressure. The shape and the dispersion relation of both transverse
and sagittal modes are compared to the prediction of non-linear elasticity that
includes finite size effects. This allows to test the existence of a shear
stiffness anomaly close to the jamming transition.Comment: 4 pages 4 figure
Detectability of dissipative motion in quantum vacuum via superradiance
We propose an experiment for generating and detecting vacuum-induced
dissipative motion. A high frequency mechanical resonator driven in resonance
is expected to dissipate energy in quantum vacuum via photon emission. The
photons are stored in a high quality electromagnetic cavity and detected
through their interaction with ultracold alkali-metal atoms prepared in an
inverted population of hyperfine states. Superradiant amplification of the
generated photons results in a detectable radio-frequency signal temporally
distinguishable from the expected background.Comment: 4 pages, 2 figure
Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry
We have performed precision electrostatic calibrations in the sphere-plane
geometry and observed anomalous behavior. Namely, the scaling exponent of the
electrostatic signal with distance was found to be smaller than expected on the
basis of the pure Coulombian contribution and the residual potential found to
be distance dependent. We argue that these findings affect the accuracy of the
electrostatic calibrations and invite reanalysis of previous determinations of
the Casimir force.Comment: 4 pages, 4 figure
A zeta function approach to the relation between the numbers of symmetry planes and axes of a polytope
A derivation of the Ces\`aro-Fedorov relation from the Selberg trace formula
on an orbifolded 2-sphere is elaborated and extended to higher dimensions using
the known heat-kernel coefficients for manifolds with piecewise-linear
boundaries. Several results are obtained that relate the coefficients, ,
in the Shephard-Todd polynomial to the geometry of the fundamental domain. For
the 3-sphere we show that is given by the ratio of the volume of the
fundamental tetrahedron to its Schl\"afli reciprocal.Comment: Plain TeX, 26 pages (eqn. (86) corrected
Differential rates of perinatal maturation of human primary and nonprimary auditory cortex
Abstract Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation of Heschl’s gyrus (HG), which contains both primary auditory cortex (pAC) and nonprimary auditory cortex (nAC), in 90 preterm infants between 26 and 42 weeks postmenstrual age (PMA). The preterm infants were in different acoustical environments during their hospitalization: 46 in open ward beds and 44 in single rooms. A control group consisted of 15 term-born infants. Diffusion parameters revealed that (1) changes in cortical microstructure that accompany cortical maturation had largely already occurred in pAC by 28 weeks PMA, and (2) rapid changes were taking place in nAC between 26 and 42 weeks PMA. At term equivalent PMA, diffusion parameters for auditory cortex were different between preterm infants and term control infants, reflecting either delayed maturation or injury. No effect of room type was observed. For the preterm group, disturbed maturation of nonprimary (but not primary) auditory cortex was associated with poorer language performance at age two years
Bose-Einstein condensation in arbitrarily shaped cavities
We discuss the phenomenon of Bose-Einstein condensation of an ideal
non-relativistic Bose gas in an arbitrarily shaped cavity. The influence of the
finite extension of the cavity on all thermodynamical quantities, especially on
the critical temperature of the system, is considered. We use two main methods
which are shown to be equivalent. The first deals with the partition function
as a sum over energy levels and uses a Mellin-Barnes integral representation to
extract an asymptotic formula. The second method converts the sum over the
energy levels to an integral with a suitable density of states factor obtained
from spectral analysis. The application to some simple cavities is discussed.Comment: 10 pages, LaTeX, to appear in Physical Review
Casimir effect due to a single boundary as a manifestation of the Weyl problem
The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases
the divergences can be eliminated by methods such as zeta-function
regularization or through physical arguments (ultraviolet transparency of the
boundary would provide a cutoff). Using the example of a massless scalar field
theory with a single Dirichlet boundary we explore the relationship between
such approaches, with the goal of better understanding the origin of the
divergences. We are guided by the insight due to Dowker and Kennedy (1978) and
Deutsch and Candelas (1979), that the divergences represent measurable effects
that can be interpreted with the aid of the theory of the asymptotic
distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases
the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having
geometrical origin, and an "intrinsic" term that is independent of the cutoff.
The Weyl terms make a measurable contribution to the physical situation even
when regularization methods succeed in isolating the intrinsic part.
Regularization methods fail when the Weyl terms and intrinsic parts of the
Casimir effect cannot be clearly separated. Specifically, we demonstrate that
the Casimir self-energy of a smooth boundary in two dimensions is a sum of two
Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a
geometrical term that is independent of cutoff, and a non-geometrical intrinsic
term. As by-products we resolve the puzzle of the divergent Casimir force on a
ring and correct the sign of the coefficient of linear tension of the Dirichlet
line predicted in earlier treatments.Comment: 13 pages, 1 figure, minor changes to the text, extra references
added, version to be published in J. Phys.
Public Health Nutrition: page 1 of 10 doi:10.1017/S1368980012000754 Review Article The science on front-of-package food labels
Objective: The US Food and Drug Administration and Institute of Medicine are currently investigating front-of-package (FOP) food labelling systems to provide sciencebased guidance to the food industry. The present paper reviews the literature on FOP labelling and supermarket shelf-labelling systems published or under review by February 2011 to inform current investigations and identify areas of future research. Design: A structured search was undertaken of research studies on consumer use, understanding of, preference for, perception of and behaviours relating to FOP/ shelf labelling published between January 2004 and February 2011. Results: Twenty-eight studies from a structured search met inclusion criteria. Reviewed studies examined consumer preferences, understanding and use of different labelling systems as well as label impact on purchasing patterns and industry product reformulation. Conclusions: The findings indicate that the Multiple Traffic Light system has most consistently helped consumers identify healthier products; however, additional research on different labelling systems ’ abilities to influence consumer behaviour is needed. In May 2010 the White House Childhood Obesity Task Force highlighted the need to ‘empower parents and caregivers to make healthy choices ’ with simple, practical information, including improved front-of-package (FOP) food labels (1). Currently the US Food and Drug Administration (FDA) has undertaken a Front-of-Package Labeling Initiative (2) with the goal of reviewing available evidence on FOP labelling systems to determine whether one approach can be recommended over others. Congress also requested that the Institute of Medicine (IOM) examine this issue and in October 2010 the Committee o
Developmental dyslexia: predicting individual risk
Background: Causal theories of dyslexia suggest that it is a heritable disorder, which is the outcome of multiple risk factors. However, whether early screening for dyslexia is viable is not yet known. Methods: The study followed children at high risk of dyslexia from preschool through the early primary years assessing them from age 3 years and 6 months (T1) at approximately annual intervals on tasks tapping cognitive, language, and executive-motor skills. The children were recruited to three groups: children at family risk of dyslexia, children with concerns regarding speech, and language development at 3;06 years and controls considered to be typically developing. At 8 years, children were classified as 'dyslexic' or not. Logistic regression models were used to predict the individual risk of dyslexia and to investigate how risk factors accumulate to predict poor literacy outcomes. Results: Family-risk status was a stronger predictor of dyslexia at 8 years than low language in preschool. Additional predictors in the preschool years include letter knowledge, phonological awareness, rapid automatized naming, and executive skills. At the time of school entry, language skills become significant predictors, and motor skills add a small but significant increase to the prediction probability. We present classification accuracy using different probability cutoffs for logistic regression models and ROC curves to highlight the accumulation of risk factors at the individual level. Conclusions: Dyslexia is the outcome of multiple risk factors and children with language difficulties at school entry are at high risk. Family history of dyslexia is a predictor of literacy outcome from the preschool years. However, screening does not reach an acceptable clinical level until close to school entry when letter knowledge, phonological awareness, and RAN, rather than family risk, together provide good sensitivity and specificity as a screening battery
Is It Rational to Assume that Infants Imitate Rationally? A Theoretical Analysis and Critique
It has been suggested that preverbal infants evaluate the efficiency of others' actions (by applying a principle of rational action) and that they imitate others' actions rationally. The present contribution presents a conceptual analysis of the claim that preverbal infants imitate rationally. It shows that this ability rests on at least three assumptions: that infants are able to perceive others' action capabilities, that infants reason about and conceptually represent their own bodies, and that infants are able to think counterfactually. It is argued that none of these three abilities is in place during infancy. Furthermore, it is shown that the idea of a principle of rational action suffers from two fallacies. As a consequence, is it suggested that it is not rational to assume that infants imitate rationally. Copyright (C) 2012 S. Karger AG, Base
- …
