89 research outputs found
Solving the Effective Field Equations for the Newtonian Potential
Loop corrections to the gravitational potential are usually inferred from
scattering amplitudes, which seems quite different from how the linearized
Einstein equations are solved with a static, point mass to give the classical
potential. In this study we show how the Schwinger-Keldysh effective field
equations can be used to compute loop corrections to the potential in a way
which parallels the classical treatment. We derive explicit results for the one
loop correction from the graviton self-energy induced by a massless, minimally
coupled scalar.Comment: 15 pages, uses LaTeX2
The Fermion Self-Energy during Inflation
We compute the one loop fermion self-energy for massless Dirac + Einstein in
the presence of a locally de Sitter background. We employ dimensional
regularization and obtain a fully renormalized result by absorbing all
divergences with BPHZ counterterms. An interesting technical aspect of this
computation is the need for a noninvariant counterterm owing to the breaking of
de Sitter invariance by our gauge condition. Our result can be used in the
quantum-corrected Dirac equation to search for inflation-enhanced quantum
effects from gravitons, analogous to those which have been found for massless,
minimally coupled scalars.Comment: 63 pages, 3 figures (uses axodraw.sty), LaTeX 2epsilon. Revised
version (to appear in Classical and Quantum Gravity) corrects some typoes and
contains some new reference
Cosmology with Interaction between Phantom Dark Energy and Dark Matter and the Coincidence Problem
We study a cosmological model in which phantom dark energy is coupled to dark
matter by phenomenologically introducing a coupled term to the equations of
motion of dark energy and dark matter. This term is parameterized by a
dimensionless coupling function , Hubble parameter and the energy
density of dark matter, and it describes an energy flow between the dark energy
and dark matter. We discuss two cases: one is the case where the
equation-of-state of the dark energy is a constant; the other is
that the dimensionless coupling function is a constant. We investigate
the effect of the interaction on the evolution of the universe, the total
lifetime of the universe, and the ratio of the period when the universe is in
the coincidence state to its total lifetime. It turns out that the interaction
will produce significant deviation from the case without the interaction.Comment: Latex, 17 pages including 14 figures, minor change
Two Loop Scalar Bilinears for Inflationary SQED
We evaluate the one and two loop contributions to the expectation values of
two coincident and gauge invariant scalar bilinears in the theory of massless,
minimally coupled scalar quantum electrodynamics on a locally de Sitter
background. One of these bilinears is the product of two covariantly
differentiated scalars, the other is the product of two undifferentiated
scalars. The computations are done using dimensional regularization and the
Schwinger-Keldysh formalism. Our results are in perfect agreement with the
stochastic predictions at this order.Comment: 43 pages, LaTeX 2epsilon, 5 figures (using axodraw.sty) Version 2 has
updated references and important corrections to Tables 3-5 and to eqns
(139-141), (145-146), (153-155), (158) and (160
Observational Signatures and Non-Gaussianities of General Single Field Inflation
We perform a general study of primordial scalar non-Gaussianities in single
field inflationary models in Einstein gravity. We consider models where the
inflaton Lagrangian is an arbitrary function of the scalar field and its first
derivative, and the sound speed is arbitrary. We find that under reasonable
assumptions, the non-Gaussianity is completely determined by 5 parameters. In
special limits of the parameter space, one finds distinctive ``shapes'' of the
non-Gaussianity. In models with a small sound speed, several of these shapes
would become potentially observable in the near future. Different limits of our
formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical
coefficients corrected in Appendix B, discussion on consistency condition
revise
Observational Signatures and Non-Gaussianities of General Single Field Inflation
We perform a general study of primordial scalar non-Gaussianities in single
field inflationary models in Einstein gravity. We consider models where the
inflaton Lagrangian is an arbitrary function of the scalar field and its first
derivative, and the sound speed is arbitrary. We find that under reasonable
assumptions, the non-Gaussianity is completely determined by 5 parameters. In
special limits of the parameter space, one finds distinctive ``shapes'' of the
non-Gaussianity. In models with a small sound speed, several of these shapes
would become potentially observable in the near future. Different limits of our
formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical
coefficients corrected in Appendix B, discussion on consistency condition
revise
Hessence: A New View of Quintom Dark Energy
Recently a lot of attention has been drawn to build dark energy model in
which the equation-of-state parameter can cross the phantom divide .
One of models to realize crossing the phantom divide is called quintom model,
in which two real scalar fields appears, one is a normal scalar field and the
other is a phantom-type scalar field. In this paper we propose a non-canonical
complex scalar field as the dark energy, which we dub ``hessence'', to
implement crossing the phantom divide, in a similar sense as the quintom dark
energy model. In the hessence model, the dark energy is described by a single
field with an internal degree of freedom rather than two independent real
scalar fields. However, the hessence is different from an ordinary complex
scalar field, we show that the hessence can avoid the difficulty of the Q-balls
formation which gives trouble to the spintessence model (An ordinary complex
scalar field acts as the dark energy). Furthermore, we find that, by choosing a
proper potential, the hessence could correspond to a Chaplygin gas at late
times.Comment: Latex2e, 12 pages, no figure; v2: discussions and references added,
14 pages, 3 eps figures; v3: published versio
Classical approximation to quantum cosmological correlations
We investigate up to which order quantum effects can be neglected in
calculating cosmological correlation functions after horizon exit. As a toy
model, we study theory on a de Sitter background for a massless
minimally coupled scalar field . We find that for tree level and one loop
contributions in the quantum theory, a good classical approximation can be
constructed, but for higher loop corrections this is in general not expected to
be possible. The reason is that loop corrections get non-negligible
contributions from loop momenta with magnitude up to the Hubble scale H, at
which scale classical physics is not expected to be a good approximation to the
quantum theory. An explicit calculation of the one loop correction to the two
point function, supports the argument that contributions from loop momenta of
scale are not negligible. Generalization of the arguments for the toy model
to derivative interactions and the curvature perturbation leads to the
conclusion that the leading orders of non-Gaussian effects generated after
horizon exit, can be approximated quite well by classical methods. Furthermore
we compare with a theorem by Weinberg. We find that growing loop corrections
after horizon exit are not excluded, even in single field inflation.Comment: 44 pages, 1 figure; v2: corrected errors, added references,
conclusions unchanged; v3: added section in which we compare with stochastic
approach; this version matches published versio
One-loop corrections to the curvature perturbation from inflation
An estimate of the one-loop correction to the power spectrum of the
primordial curvature perturbation is given, assuming it is generated during a
phase of single-field, slow-roll inflation. The loop correction splits into two
parts, which can be calculated separately: a purely quantum-mechanical
contribution which is generated from the interference among quantized field
modes around the time when they cross the horizon, and a classical contribution
which comes from integrating the effect of field modes which have already
passed far beyond the horizon. The loop correction contains logarithms which
may invalidate the use of naive perturbation theory for cosmic microwave
background (CMB) predictions when the scale associated with the CMB is
exponentially different from the scale at which the fundamental theory which
governs inflation is formulated.Comment: 28 pages, uses feynmp.sty and ioplatex journal style. v2: supersedes
version published in JCAP. Some corrections and refinements to the discussion
and conclusions. v3: Corrects misidentification of quantum correction with an
IR effect. Improvements to the discussio
Infrared effects in inflationary correlation functions
In this article, I briefly review the status of infrared effects which occur
when using inflationary models to calculate initial conditions for a subsequent
hot, dense plasma phase. Three types of divergence have been identified in the
literature: secular, "time-dependent" logarithms, which grow with time spent
outside the horizon; "box-cutoff" logarithms, which encode a dependence on the
infrared cutoff when calculating in a finite-sized box; and "quantum"
logarithms, which depend on the ratio of a scale characterizing new physics to
the scale of whatever process is under consideration, and whose interpretation
is the same as conventional field theory. I review the calculations in which
these divergences appear, and discuss the methods which have been developed to
deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on
nonlinear and nongaussian perturbation theory. Some improvements compared to
version which will appear in CQG, especially in Sec. 2.3. 30 pages +
references
- …
